Книги по бизнесу и учебники по экономике. 8 000 книг, 4 000 авторов

» » Читать книгу по бизнесу Искусственный интеллект на службе бизнеса Аджея Агравала : онлайн чтение - страница 2

Искусственный интеллект на службе бизнеса

Правообладателям!

Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?

  • Текст добавлен: 8 ноября 2019, 10:20

Текст бизнес-книги "Искусственный интеллект на службе бизнеса"


Автор книги: Аджей Агравал


Раздел: Зарубежная деловая литература, Бизнес-книги


Возрастные ограничения: +16

Текущая страница: 2 (всего у книги 3 страниц)

«Дешево» значит «повсеместно»

Когда цена на что-то внезапно и существенно падает, может измениться целый мир. Возьмем, к примеру, свет. Не исключено, что вы читаете эту книгу при искусственном освещении. И более того, включая свет, вы, скорее всего, никогда не подсчитывали, во сколько вам обойдется чтение. Электричество настолько дешево, что им пользуются, не задумываясь. Однако, согласно подробному исследованию экономиста Уильяма Нордхауса, в начале XIX века освещение стоило в сотню раз дороже[7]7
  Nordhaus, W. D. Do Real-Output and Real-Wage Measures Capture Reality? The History of Lighting Suggests Not. – Yale University: Cowles Foundation for Research in Economics, 1998 // https://lucept.files.wordpress.com/2014/11/william-nordhaus-the-cost-of-light.pdf.


[Закрыть]
. Всего два века назад вы сто раз подумали бы, прежде чем читать при свете. Падение цен на электричество осветило мир. Ночь легко превращалась в день, стало возможным жить и работать в больших зданиях, куда не проникал естественный свет. Практически ничего из того, что мы имеем сейчас, не существовало бы без мизерной платы за электричество.

С технологическими новшествами удешевляется все. С изменением цены за бытовое электричество изменилось и наше поведение – от раздумий, стоит ли включать свет, к бездумному щелчку выключателем. Существенное падение цен дает шанс делать то, что мы не делали раньше; невозможное становится возможным. И неудивительно, что экономисты озабочены последствиями грандиозного падения цен на такие фундаментальные результаты прогресса, как свет.

Одни последствия дешевизны света были более предсказуемы, другие – менее. Не всегда полностью очевидно, на что именно повлияет падение цены вследствие появления новых технологий, будь то искусственное освещение, паровые машины, автомобили или вычисления.

Тим Бреснахан, экономист из Стэнфорда и один из наших наставников, подчеркивал, что компьютеры выполняют расчеты, и ничего более. Распространение и коммерциализация компьютеров понизили стоимость вычислений[8]8
  Часть долговременной тенденции по снижению стоимости вычислений; см. Nordhaus, W. D. Two Centuries of Productivity Growth in Computing // Journal of Economic History. 2007. Vol. 67/1. P. 28–159.


[Закрыть]
. Теперь мы не только чаще используем их для обычных расчетов, но и применяем новую, дешевую арифметику в сферах, традиционно не связываемых с ней, например в музыке.

Ада Лавлейс, которая считается первым программистом, раньше всех разглядела эти возможности. Работая при дорогостоящем освещении в начале XIX века, она написала первую программу расчета последовательности чисел (называемых «числами Бернулли») для компьютера, разработанного Чарльзом Бэббиджем тогда еще в теории. Бэббидж тоже был экономистом, и, как вы узнаете из нашей книги, это не единственный случай пересечения экономики и IT-дисциплин. Лавлейс понимала, что арифметика может, выражаясь современным жаргоном стартапов, «масштабироваться» и содержит огромный потенциал. Ада догадывалась, что возможности компьютеров не сводятся к арифметическим операциям: «Если предположить, например, что фундаментальные соотношения тонов звукоряда в гармонии и музыкальной композиции можно выразить и адаптировать в таком виде, то машина могла бы сочинять затейливые и искусные музыкальные произведения любой степени сложности»[9]9
  Lovelace, cit. in Isaacson, W. The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution. NY: Simon & Schuster, 2014. P. 27.


[Закрыть]
. Никаких компьютеров тогда и в помине не было, но Лавлейс предполагала, что вычислительные машины могут хранить и воспроизводить музыку – форму искусства, повлиявшую на все его остальные жанры и человечество в целом.

Так и произошло. Когда полтора века спустя цена на расчеты опустилась достаточно низко, арифметике нашлось столько применений, сколько никому и не снилось. Она внесла такой важный вклад во множество сфер деловой и обычной жизни, что с ее удешевлением мир, как это уже бывало, преобразился. Если свести что-либо к чистым издержкам, легко отделить зерна от плевел, хотя это и не самый увлекательный способ поведать о новейших передовых технологиях. Стив Джобс никогда не анонсировал выпуск «счетной машины», хотя только ими всю жизнь и занимался. Новые счетные машины Джобса имели успех, потому что снижали цену на что-то значимое.

Это возвращает нас к ИИ. Для экономики он имеет огромное значение именно потому, что удешевит что-то важное. Сейчас вы, вероятно, думаете об интеллекте, логических рассуждениях и мышлении вообще. А может, представляете себя среди роботов или бестелесных существ, таких как дружелюбные компьютеры из фильма «Звездный путь», которые избавят вас от необходимости думать. У Лавлейс было похожее предположение, но она быстро от него отказалась. Во всяком случае в отношении компьютеров она писала, что «у них нет никаких притязаний к созиданию. Они могут только то, что умеем мы. Они способны следовать порядку расчетов, но не обладают возможностью предвосхищать аналитические соотношения или истины»[10]10
  Lovelace, cit. in Isaacson, W. The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution. NY: Simon & Schuster, 2014. P. 27.


[Закрыть]
.

Несмотря на ажиотаж вокруг ИИ, «возражения леди Лавлейс», как позднее назвал их Алан Тьюринг[11]11
  Тьюринг Алан (Alan Mathison Turing; 1912–1954) – английский математик, логик, криптограф, оказавший существенное влияние на развитие информатики. Предложил эмпирический тест Тьюринга для оценки ИИ компьютера. В честь ученого названа премия Тьюринга – самая престижная в мире награда в области информатики. Прим. ред.


[Закрыть]
, все еще актуальны. Компьютеры пока не умеют думать, так что мысли подешевеют нескоро. Однако цена снизится на нечто настолько привычное и повсеместно используемое (как и арифметика), что никто, скорее всего, еще не догадывается, насколько удешевление повлияет на нашу жизнь и экономику.

Что же подешевеет благодаря ИИ? Ответим: прогнозы. Следовательно, согласно законам экономики, мы не только станем чаще пользоваться ими, но и начнем применять в самых неожиданных областях нашей жизни.

Дешевизна создает преимущества

Прогнозирование (или прогностика) – это процесс заполнения информационных пробелов. Берется имеющаяся информация, называемая данными, и из нее выводится отсутствующая информация. В многочисленных обсуждениях ИИ акцентируется разнообразие прогностических методов с непонятными названиями: классификация, кластеризация, регрессия, дерево решений, байесовское оценивание, нейронные сети, топологический анализ данных, глубокое обучение, стимулированное обучение, глубокое стимулированное обучение, капсульные сети и т. д. Специалисты используют для внедрения ИИ соответствующие конкретной прогностической задаче способы.

В книге мы избавим вас от математики, лежащей в основе этих методов. Хотим лишний раз подчеркнуть, что все они касаются прогностики: использования имеющейся информации для генерации отсутствующей. Мы поможем вам определить, в каких ситуациях необходимо иметь прогноз и как получить от него максимальную выгоду.

Удешевление прогностики ведет к ее распространению. Снова элементарная экономика в действии: мы покупаем больше товаров или услуг, если цены на них падают. Например, когда в 1960-е годы зарождалась компьютерная индустрия, цена на арифметику начала быстро снижаться, и там, где она была уже востребована, к ней обращались чаще – например, в Бюро переписи населения США, Министерстве обороны США, НАСА (что отображено в фильме 2016 года «Скрытые фигуры»). Позднее новая, дешевая арифметика нашла применение в сферах, к которым прежде не имела отношения, – таких как фотография. Когда-то фотоновинки разрабатывались благодаря химии, но с удешевлением арифметики появилось и соответствующее решение – цифровые камеры. Цифровой снимок представляет собой всего лишь последовательность нулей и единиц, посредством арифметики преобразуемую в визуальное изображение.

То же касается и прогнозов. Они используются в привычных задачах: управлении ресурсами и прогнозировании спроса, – но благодаря удешевлению все чаще применяются в сферах, не относящихся к прогностике. Кэтрин Хауи из Integrate.ai призывает переформулировать любую проблему в контексте прогностики, и современные инженеры всего мира все чаще так и поступают. Беспилотный транспорт существует в управляемой среде уже больше двадцати лет, однако функционировал он при наличии подробных планов этажей на заводах и складах. С поэтажным планом разработчики программировали своих роботов двигаться согласно логической схеме «если, то»: если перед роботом находится человек, то следует команда «стоп». Если полка пуста, то нужно двигаться к следующей. Обычные улицы оставались для роботов недоступными – в городском пространстве может случиться все что угодно – слишком много возникает условий «если, то», всего не предусмотреть.

Беспилотный транспорт не будет работать вне полностью предсказуемой и контролируемой среды до тех пор, пока инженеры не переформулируют проблему навигации в прогностическую. Они уже поняли, что вместо того, чтобы просчитывать для машины действия во всех возможных обстоятельствах, необходимо поставить одну прогностическую задачу: что сделал бы человек? И сейчас компании вкладывают миллиарды долларов в обучение машин беспилотному передвижению в неконтролируемой среде, в том числе на городских улицах и шоссе.

Представьте ИИ сидящим в автомобиле рядом с водителем. Человек проезжает миллионы километров, получает зрительную и звуковую информацию из окружающей среды, обрабатывает ее мозгом и реагирует соответственно: едет прямо или сворачивает, тормозит или разгоняется. Инженеры оснастили ИИ собственными глазами и ушами – датчиками (камерами, радарами, лазерами). Таким образом ИИ собирает поступающие к нему со всех сторон данные, пока человек управляет автомобилем, и одновременно регистрирует реакцию водителя. При совокупности конкретных данных человек поворачивает направо, тормозит или нажимает на газ. Чем дольше ИИ наблюдает за водителем, тем лучше предсказывает его действия, исходя из поступающих данных. ИИ учится водить машину, прогнозируя, как поступил бы человек в соответствующих обстоятельствах.

И вот что самое главное: когда такая важная вводная, как прогноз, дешевеет, возрастает ценность других вещей. Экономисты называют их «дополняющими факторами». Как падение цены на кофе повысило ценность сахара и сливок, так для беспилотных автомобилей падение цены прогноза повышает ценность датчиков сбора данных окружающей среды. Например, в 2015 году Intel заплатила больше $15 млрд за израильский стартап Mobileye, в первую очередь за технологию сбора данных, позволяющую транспортному средству эффективно распознавать объекты (дорожные знаки, людей и т. д.) и разметку (на улицах и дорогах).

Дешевея, прогностика станет использоваться чаще, возрастет количество дополняющих ее факторов: данные базовые экономические силы приводят в действие новые возможности, создаваемые прогностическими машинами. На элементарном уровне они снимут с человека задачи прогнозирования и таким образом снизят издержки. По мере распространения машин прогностика изменит и улучшит качество принятия решений. Но в какой-то момент прогностические машины, вероятно, станут столь точными и надежными, что изменят и деятельность организаций. Некоторые ИИ настолько заметно повлияют на деловую экономику, что перестанут использоваться только для повышения продуктивности в соответствии со стратегией; они изменят саму стратегию.

От дешевизны к стратегии

Руководители постоянно спрашивают нас: «Как ИИ повлияет на нашу стратегию бизнеса?» Проведем для ответа мысленный эксперимент. Большинство людей делали покупки на Amazon. Как и в остальных онлайн-магазинах, вы открываете сайт, находите нужные вещи, кладете их в корзину, оплачиваете и затем получаете по почте. Сейчас модель Amazon такова: «покупка – затем доставка».

Когда вы заходите на сайт, ИИ Amazon прогнозирует, что вы хотели бы купить, и предлагает соответствующие товары. Это целесообразный труд, однако его результаты далеки от идеала. В нашем случае точность прогнозов не превышает 5 %. И мы заказываем одну из множества рекомендуемых вещей. С учетом миллионного ассортимента это совсем не плохо!

Представьте, что ИИ Amazon собрал больше информации о нас и использует ее для улучшения качества прогнозов, – это усовершенствование сравнимо с поворотом регулятора громкости на колонках, только вместо звука регулируется точность прогнозов.

В определенный момент поворота ручки точность прогнозов ИИ достигает порогового значения и меняет бизнес-модель Amazon. Прогнозы становятся настолько точными, что компании выгоднее присылать вам товары, которые вы предположительно захотите купить, чем ждать, пока вы закажете их на сайте.

В таком случае другие магазины вам уже не нужны, а каждая покупка будет стимулировать следующую. Amazon получит основную долю содержимого вашего кошелька. Очевидно, что это выгодно Amazon, но также удобно и вам. Магазин доставляет покупки до того, как вы их совершили, и таким образом избавляет вас от траты времени на шопинг. С поворотом регулятора точности на максимум бизнес-модель Amazon меняется с «покупка – затем доставка» на «доставка – затем покупка».

Разумеется, покупатели не захотят возиться с возвратом нежелательных товаров. Поэтому Amazon вложится в отладку этого процесса – скажем, раз в неделю служба доставки будет собирать невостребованные посылки[12]12
  Amazon уже работает над потенциальными проблемами безопасности по этому плану. В 2017 году она запустила Amazon Key – систему, позволяющую доставщикам открыть входную дверь клиента и оставить посылку внутри помещения. Происходящее записывается на видеокамеру для контроля.


[Закрыть]
.

Но если такая бизнес-модель лучше, почему Amazon до сих пор ее не внедрил? Дело в том, что сегодня издержки сбора и обработки возвратов перевешивают рост дохода от основной доли кошелька. Например, сейчас мы вернули бы 95 % доставленных товаров. Это трудоемко для нас и затратно для Amazon. Для освоения новой бизнес-модели прогнозы пока еще недостаточно точны.

Возможен иной вариант: Amazon обращается к новой стратегии до того, как точность прогнозов достигнет качественного уровня, исходя из предположения, что однажды это принесет выгоду. Благодаря раннему запуску ИИ соберет больше данных за короткий срок и усовершенствуется. В Amazon понимают, что чем раньше они стартуют, тем сложнее будет конкурентам их нагнать. Качественный прогноз привлечет больше покупателей, что увеличит объем данных для обучения ИИ и, в свою очередь, приведет к повышению качества прогнозов, а далее этот цикл неоднократно повторится. Раннее внедрение обойдется дорого, но опоздание может стать роковым[13]13
  Любопытно отметить, что некоторые стартапы уже мыслят в этом направлении. Stitch Fix использует машинное обучение для прогнозирования, какая одежда понравится пользователям, и отправляет им посылку. Затем нежелательные вещи возвращают. В 2017 году Stitch Fix успешно провел первичное публичное размещение акций по этой модели – вероятно, первым из всех «ориентированных на ИИ» стартапов.


[Закрыть]
.

Мы не утверждаем, что Amazon будет или должен внедрять такую практику, хотя для скептиков у нас есть неожиданная новость: в 2013 году Amazon получил патент США на «опережающую доставку»[14]14
  См. US Patent Number 8,615,473 B2; Kopalle, P. Why Amazon’s Anticipatory Shipping is Pure Genius // Forbes. 2014. January 29 // https://www.forbes.com/sites/onmarketing/2014/01/28/why-amazons-anticipatoryshipping-is-pure-genius/#2a3284174605.


[Закрыть]
. Несомненно, вращение регулятора точности прогнозов коренным образом повлияет на стратегию. В данном примере оно меняет бизнес-модель Amazon с «покупка – затем доставка» на «доставка – затем покупка», создает стимул для вертикальной интеграции посредством организации услуги по возврату товаров (в том числе грузового автопарка) и ускоряет процесс инвестирования. И все это вследствие поворота регулятора точности прогностической машины.

Что это означает для стратегии? Во-первых, необходимо инвестировать в сбор информации относительно того, как быстро и насколько высоко вырастет точность прогнозов в вашем и в смежных секторах. Во-вторых, разработка тезиса о стратегических возможностях, образовавшихся в результате вращения регулятора точности, потребует финансовых вложений.

Чтобы начать «научное фантазирование», закройте глаза, мысленно возьмитесь за регулятор прогностической машины и, следуя бессмертным словам члена группы Spinal Tap[15]15
  Spinal Tap – вымышленная британская рок-группа из одноименного псевдодокументального фильма 1984 года. Прим. перев.


[Закрыть]
, поверните его на 11 часов.

План книги

Прежде всего необходимо построить фундамент для стратегического внедрения прогностических машин в своей организации. Именно так мы структурировали книгу – возводили пирамиду от основания.

В части I мы заложим фундамент и объясним, как машинное обучение повышает качество прогнозов. Затем разберемся, чем новые преимущества отличаются от статистики, которой вас учили или которой уже занимаются ваши аналитики. Далее мы затронем ключевые дополняющие факторы прогнозов – данные, особенно те, что необходимы для качественной прогностики, – и расскажем, как убедиться, что они у вас есть. И в завершение рассмотрим, когда прогностические машины работают эффективнее человека и в каких случаях людям и машинам целесообразно объединить усилия для получения максимально точных прогнозов.

В части II мы опишем роль прогнозов в качестве вводных для принятия решений и объясним значение еще одной составляющей, пока недооцененной в сфере ИИ, – суждений. Прогнозы помогают принимать решения, снижая неопределенность, а суждения определяют ценность. В экономической терминологии суждением называется определение окупаемости, целесообразности, дохода и прибыли. Самое значительное свойство прогностических машин состоит в том, что они повышают ценность суждения.

В части III перейдем к практике. Прогностические машины оснащены инструментами ИИ в соответствии с конкретными задачами. Мы опишем шаги, помогающие определить, когда создание (или покупка) инструментов ИИ максимально повысит доход. Иногда такие инструменты идеально укладываются в рабочий процесс, но бывает, что побуждают изменить его. Также мы познакомим вас с важным подспорьем для уточнения ключевых требований к инструментам – «шаблоном ИИ».

В части IV вернемся к стратегии. Как в описанном нами эксперименте с Amazon, иногда ИИ настолько масштабно влияет на экономику задачи, что преобразует компанию или промышленность. Тогда он становится краеугольным камнем стратегии организации. В результате воздействия на стратегию ИИ переключает на себя внимание высшего руководства помимо менеджеров продукта и инженеров.

Как правило, заранее предусмотреть степень влияния ИИ на стратегию нельзя. Например, немногие, опробовав инструменты поиска Google, предсказывали, что они преобразуют медиаиндустрию и лягут в основу самых успешных компаний планеты.

Помимо возможностей получения прибыли ИИ несет системные риски, способные повлиять на бизнес. Все сосредоточены на рисках ИИ для человечества, но мало кто обращает внимание на опасность ИИ для организаций. К примеру, некоторые прогностические машины, обучаемые на полученных от человека данных, заодно усваивают ненужные отклонения и стереотипы.

Книгу завершает часть V, в которой мы отвечаем на вопросы о широком влиянии ИИ на общество и касаемся пяти основных спорных тем.


1. Сохранятся ли рабочие места? Ответим: да.

2. Усугубится ли проблема неравенства? Вероятно.

3. Будут ли несколько крупнейших компаний контролировать весь мир? Зависит от обстоятельств.

4. Страны погрузятся в политику «гонки уступок», лишат нас приватности и безопасности ради конкурентного преимущества отечественных компаний? Некоторые – да.

5. Наступит ли конец света? До него достаточно времени, чтобы успеть с пользой применить полученную информацию.

Выводы

• Экономика предлагает четкое представление о влиянии удешевления прогнозов на бизнес. Прогностические машины будут использоваться как для традиционных (управление ресурсами и прогнозирование спроса), так и для новых задач. Падение цен на прогнозы повлияет на ценность других понятий и предметов, повысит ценность дополняющих факторов (данных, суждения и действий) и снизит ценность эквивалентов (человеческого прогноза).

• Организации могут использовать прогностические машины, внедряя инструменты ИИ с целью выполнения текущей стратегии. Когда инструменты станут мощнее, они изменят саму стратегию. Например, если Amazon сможет прогнозировать желания покупателей, то перейдет с модели «покупка – затем доставка» на модель «доставка – затем покупка» – будет доставлять товары до размещения заказов. Такой переход преобразит организацию.

• В результате новых стратегий, разработанных с учетом преимуществ ИИ, мы встанем перед фактом его влияния на общество. Наш выбор будет зависеть от потребностей и предпочтений и наверняка в разных странах и культурах окажется разным. Мы разделили книгу на пять частей в соответствии с уровнями влияния ИИ и от основы пирамиды – прогнозов – начнем подниматься выше: прогностика, принятие решений, инструменты, стратегия и общество.

Часть I. Прогностика

Глава 1. Волшебство прогностических машин

Что общего у Гарри Поттера, Белоснежки и Макбета? Их действиями движет пророчество, то есть прогноз. Даже сюжет «Матрицы», вроде бы описывающий прогностические машины, построен на вере персонажей в предсказание. Везде, от религии до сказок, знание будущего имеет решающее значение. Предсказания влияют на наше поведение и принятие решений.

Древние греки чтили своих многочисленных оракулов за пророческие способности, но их предсказания иногда бывали такими туманными, что сбивали с толку вопрошающих. Например, однажды царь Лидии Крез задумал рискованный штурм Персидской империи. И поскольку не доверял полностью ни одному оракулу, решил проверить каждого, прежде чем просить совета о нападении на Персию. Ко всем оракулам он разослал гонцов. На сотый день они должны были спросить, что Крез делает прямо сейчас. Ближе всех к истине оказался оракул из Дельф, поэтому царь обратился за пророчеством к нему[16]16
  В качестве напоминания о том, как важно правильно интерпретировать прогноз: дельфийский оракул предсказал, что великая империя будет уничтожена, если царь атакует. Воодушевленный Крез напал на Персию, но, к его удивлению, Лидийская империя рухнула. Прогноз в принципе оказался верным, просто неправильно понятым.


[Закрыть]
.

Как и в примере с Крезом, прогноз может касаться и настоящего. Мы предполагаем, правомерная или мошенническая операция проводится по кредитной карте, злокачественная опухоль на снимке или доброкачественная, в камеру телефона смотрит владелец iPhone или посторонний человек.

Слово «прогноз» происходит от греческого слова πρόγνωσις, буквально означающего «предузнавание» (то есть знание того, что произойдет), но в современном понимании это скорее способность видеть скрытую информацию как в будущем, так и в прошлом и настоящем. Наверное, самый известный символ магического предсказания – хрустальный шар. И хотя в нашем представлении он связан с гадалками, обещающими финансовое процветание или успех в любви, в книге Фрэнка Баума «Волшебник страны Оз» Дороти с его помощью видит, что делает ее тетя Эм в настоящем. Все это приводит нас к определению прогностики.

Страницы книги >> Предыдущая | 1 2 3 | Следующая

Правообладателям!

Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Топ книг за месяц
Разделы







Книги по году издания