Книги по бизнесу и учебники по экономике. 8 000 книг, 4 000 авторов

» » Читать книгу по бизнесу Как вытащить из данных максимум. Навыки аналитики для неспециалистов Джордана Морроу : онлайн чтение - страница 2

Как вытащить из данных максимум. Навыки аналитики для неспециалистов

Правообладателям!

Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?

  • Текст добавлен: 25 января 2022, 11:20

Текст бизнес-книги "Как вытащить из данных максимум. Навыки аналитики для неспециалистов"


Автор книги: Джордан Морроу


Раздел: О бизнесе популярно, Бизнес-книги


Текущая страница: 2 (всего у книги 2 страниц)

Данные: в чем причина нехватки навыков?

У такого огромного пробела в знаниях и навыках наверняка есть какие-то причины. Каковы же они? Очевидно, что факторов множество: от недостатков в системе образования до проблем с технологиями и программным обеспечением и даже до производства данных как такового. Сейчас мы подробно рассмотрим эти возможные причины, а вы задумайтесь, как они могли повлиять на вашу карьеру и умение извлекать пользу из данных (будь то на личном уровне или во взаимодействии с людьми, с которыми вы работаете).

Программное обеспечение и технологии

Возможно, вы задумаетесь: как ПО и технологии могут быть причиной нехватки навыков дата-грамотности? Разве все не должно быть наоборот? Разве они не уменьшают этот пробел? Что ж, ответ вроде бы очевиден: да, должно быть наоборот; да, уменьшают. Задача ПО и технологий – помогать нам решать задачи, связанные с данными и их анализом, и получать реальные бизнес-результаты. Они должны дополнять человека, если он достаточно образован и обучен, чтобы ими пользоваться.

Проблема заключается в том, как именно вложения в технологии и ПО осуществляются людьми и организациями. Представьте себе, что вы руководите компанией и пытаетесь выстроить стратегию работы с данными, которая должна помочь вам добиться успеха в эпоху цифровой революции. К вам приходит замечательный торговый агент и заявляет: «Наше новое программное обеспечение предназначено для того, чтобы расширить возможности для решения задач по данным и аналитике». Или обещает: «Наша программа решит все проблемы с данными и их анализом». Словом, чтобы убедить вас купить его ПО, он засыплет вас самыми разнообразными убедительными аргументами. Он покажет вам примеры из практики и данные исследований. Полюбовавшись на все это, вы решите вложить свои деньги в ПО и внедрить его в своей организации. Когда организация обеспечивает всем своим работникам равный доступ к аналитическим программам, это называется «демократизация данных». Открою небольшой секрет. С одной стороны, демократизация данных – именно то, что должна проделать каждая компания. С другой – это проблема. Давайте рассмотрим ее немного подробнее.

Исторически данные принадлежали сфере информации и технологий (или какой-то другой отдельной части бизнеса), так что лишь немногие сотрудники работали с ними, составляли отчеты и делали анализ. Таким образом, организация доверяла получение достоверных, практически применимых результатов этой ограниченной группе сотрудников. По мере того, как компании, предоставляющие инструменты бизнес-аналитики, такие как Qlik или Tableau, прогрессировали и превращались в гиганты разработки ПО, организации стали искать пути широкого распространения и использования данных. Таким образом они демократизировали данные и информацию, рассчитывая получить полезные знания и результаты. Но налицо одна большая проблема: многих ли в школе и университете учили работе с данными и их анализу? В последние годы количество таких людей растет, но что делать с теми, кто не получил соответствующего образования?

Может показаться, будто мы хотим сказать, что демократизация данных – это не решение. Не хотим! Демократизация данных полезна – благодаря инвестициям в данные и аналитику организации раскрывают свой потенциал. Демократизация данных позволяет использовать уникальные таланты и способности сотрудников, получать больше отдачи от вложений в ПО, данные и технологии. Причина, по которой демократизация данных может увеличивать недостаток знаний в организации, – образовательный фундамент ее коллектива. Если от людей, которые не обучались использованию данных и технологий, требуют освоить новое ПО и новые технологии или извлекать пользу из данных и информации, они никак не смогут проделать это эффективно. Как вы думаете, многие ли из них с готовностью (и радостью) бросятся использовать эти новые технологии? Часто ли вы сами с восторгом соглашаетесь учиться чему-то новому, тому, чем вас внезапно нагружают по работе?

Вернемся к исследованию 2019 года о влиянии человеческого фактора на дата-грамотность и вспомним, какую проблему оно выявило: 36 % участников «предпочли бы искать иные методы решения задачи вместо использования данных», а 14 % – «постарались бы полностью уклониться от задачи», если бы им нужно было использовать данные. Это прекрасная демонстрация нехватки навыков работы с данными. А те, кто чувствует себя в этой области комфортно и уверенно, с большей охотой станут осваивать технологии. То же исследование показало, что почти три четверти участников (74 %) чувствуют себя расстроенными или несчастными при работе с данными. Этот показатель свидетельствует: внедрение новых технологий и демократизация данных утомляет сотрудников. Корень проблемы именно в этой всеобщей усталости и нехватке навыков использования данных.

Производство данных

Как связаны производство данных и отсутствие умения с ними обращаться? Выше уже говорилось, сколько данных ежегодно производится в мире. Технологический прогресс ускоряется, количество данных растет, а в итоге организации и их сотрудники оказываются не готовы к обработке всего этого объема. Организации, которые возникли уже в цифровую эпоху, подготовлены к лавине данных несколько лучше, поскольку именно данные во многом определяют их рабочие процессы. Но что делать более старым компаниям? Их руководители отчаянно пытаются создать возможности для эффективного использования данных – и обнаруживают, что это не так-то просто. Речь не о том, что у них не выходит получать и использовать данные. Они обнаруживают, что нельзя просто инвестировать в ПО и технологии, собрать данные… И вот ты уже царь горы – горы данных, доступных для анализа. В то же время, как показывают исследования, сотрудники просто не в состоянии достаточно быстро приспосабливаться к среде, которая становится все динамичнее. Отсюда и нехватка навыков работы с данными.

Отсутствие стратегии в сфере данных и их анализа

Еще одна причина нехватки навыков работы с данными – отсутствие у организаций соответствующей стратегии. Каков механизм этого? Для начала сядьте и подумайте: есть ли у вашей организации четкая и конкретная стратегия обращения с данными? Увы, многие из вас ответят, что нет. Отсутствие стратегии – это лишняя нагрузка на сотрудников, которые выбиваются из сил, пытаясь понять, как использовать ПО и технологии, в которые компания вложила деньги. (Помните исследование 2019 года? Люди действительно расстраиваются и устают!)

В чем важность для предприятия четкой и конкретной стратегии работы с данными и их анализом? Давайте вернемся к примеру с бегуном, которому также необходима определенная стратегия. Представьте себе начинающего (или не совсем начинающего, но в любом случае непрофессионального) спортсмена, который участвует в забеге.

Допустим, этот спортсмен – вы. Вы давно не бегали, но кто-то из ваших друзей, родных или коллег участвует в забегах. Вы видите, как это их воодушевляет, постоянно слушаете их разговоры (я сам бегун и прекрасно понимаю, что меня сложно заставить замолчать, если уж я оседлал любимого конька). И вы решаете тоже записаться на забег. До него остается несколько месяцев. Вы записались, но у вас нет стратегии тренировок, вы не изучили трассу, вы не представляете, как правильно питаться и сколько нужно пить жидкости, – однако тренируетесь и едите, зная, что это необходимо. Кроме того, не имея стратегии, вы не знаете, какие вложения требуются для осуществления вашей мечты.

И вот наступил день забега. Вы стоите у стартовой линии, чувствуя себя более или менее подготовленным. У вас с собой, возможно, запас пищи и воды, и вы надеетесь, что тренировки помогут вам дойти до финиша. Но на самом деле вы не готовились должным образом – хотя, конечно, кое-как тренировались и даже купили спортивную форму. Если вы бежите полумарафон, то, возможно, справитесь с забегом, пусть и с трудом. Но и в полном, и в ультрамарафоне вам, скорее всего, придется сойти с дистанции.

А теперь представьте другой подход. Вы записываетесь на забег уже после того, как выработали стратегию, которая поможет вам добиться результата. Вы точно знаете, какое снаряжение вам необходимо, сколько питательных веществ и жидкости нужно вашему организму. Вы обратились к хорошему тренеру, который проследит за процессом вашей подготовки, давая необходимые указания. Итак, тренировки завершены, и вы выходите на старт. Теперь вы дойдете до финиша на любой дистанции – через боль, через усталость, но дойдете. Вы знали, что нужно делать, и достигли успеха именно благодаря стратегии и правильной подготовке.

В целом эти примеры наглядно показывают, что нужно организации от стратегии в сфере данных и их анализа. Слишком долго руководители полагались на более бессистемный подход. Они знали, что нужно инвестировать в данные и аналитику, но делали недостаточно, не разобравшись, какое снаряжение и зачем они приобретают (и подходит ли оно им вообще). Они не обращались к «тренерам», которые могли бы помочь им разработать и воплотить стратегию. А потом обнаруживалось, что инвестиции – порой миллионы долларов – не дают ожидаемых результатов. К несчастью, таких руководителей и компаний очень много.

Организация должна построить стратегию получения и использования данных, чтобы расширять видение, ставить цели и решать задачи. На сегодня большинству организаций во всем мире не хватает такой стратегии.

При отсутствии стратегии навыки обращения с данными у сотрудников только ухудшаются. Вместо того чтобы выработать четкую стратегию, определяющую и обеспечивающую поток инвестиций в ПО, технологии и обучение персонала, компании просто покупают ПО и технологии, рассчитывая, что все как-то само собой заработает. Налицо подмена понятий: руководители думают, что технологии – это и есть стратегия, и навязывают их сотрудникам. Но в таком случае стратегия не определяет, какую технологию использовать. В результате сотрудники отвергают новшества и возвращаются к старым способам решения задач. А новая технология как ненужная игрушка, которая лежит на полке и пылится.

Это приводит к двойной проблеме. Во-первых, ПО, купленное компанией, не внедряется или не используется сколько-нибудь эффективно. Во-вторых, вместо совершенствования навыков работы с данными сотрудники компании лишь еще больше отстают, потому что не желают осваивать программы и технологии, которые были приобретены, казалось бы, для их удобства.

Данные: что дальше?

Итак, мы выяснили, что при нехватке у сотрудников соответствующих навыков данные не используются достаточно эффективно. И что же делать? Действительно ли необходимо бороться с этим недостатком и ликвидировать пробелы – или все-таки можно продолжать работать как раньше? Ответ очевиден: ликвидировать пробелы необходимо!

Как уже было сказано, к 2025 году будет производиться примерно 463 эксабайта данных ежедневно: это наше будущее. Давайте еще нагляднее, без примеров с DVD: один эксабайт – это единица с 18 нулями. Так что представьте себе число 463 и припишите к нему 18 нулей. По другим прогнозам, к 2025 году количество производимых ежедневно данных будет равняться 175 секстибайтам, а секстибайт – это единица с 21 нулем: 1 секстибайт равен триллиону гигабайт[14]14
  Morris, T. (2020). How Much Data by 2025? [Blog], Microstrategy, 6 January. https://www.microstrategy.cn/us/resources/blog/bi-trends/how-much-data-by-2025.


[Закрыть]
. Так какой же прогноз верен? Или лучше задать другой вопрос: а так ли это важно? Ведь это просто очень много данных, и нет никаких сомнений, что где-то среди них скрывается много ценных знаний. И мы снова возвращаемся к той же проблеме: если нам так не хватает навыков в обращении с данными, смогут ли отдельные люди и организации воспользоваться этим огромным объемом данных с выгодой для себя? Или большинству придется бессильно наблюдать, как организации, умеющие использовать данные, легко обходят конкурентов?

Краткое содержание главы

В целом можно сказать, что мир данных, в котором мы живем, – удивительный, пугающий и неизведанный. В будущем появятся новые профессии, возможности и изобретения, и мы пока не можем сказать, что повлекут за собой все эти новшества. Наверняка возникнет необходимость в новых навыках, но мы не знаем, каких именно. Одно ясно уже сейчас: данные были и будут всегда! Сегодня налицо тенденция быстрого и масштабного накопления данных, которые необходимо обрабатывать. Есть и другая тенденция: все очевиднее нехватка навыков у сотрудников организаций. Это мешает организациям добиваться успеха и эффективно использовать инвестиции в данные и их анализ. Что же мы можем сделать? Есть ли решение этой проблемы? Конечно же, да! Перед людьми и организациями, которые смогут освоить мир дата-грамотности, откроются огромные возможности.

02
Четыре уровня аналитических методов

Данные и их анализ – целых четыре уровня?

Теперь, когда мы получили представление о мире данных, нам нужно целостное понимание методов анализа данных. Только в этом случае люди и организации смогут эффективно использовать данные и извлекать выгоду из аналитики. Понимание – ключ к реализации работающей стратегии в области работы с данными. Если понимания нет, руководители могут закупать сколь угодно дорогое и мощное ПО, получать данные и демократизировать инструменты работы с ними, но им будет непонятно, действительно ли их организации нужно именно это. Основа мира аналитики – четыре уровня: дескриптивный (описательный), диагностический, предиктивный (предсказательный) и прескриптивный (предписывающий). Чтобы осознать необходимость изучения этих уровней, давайте заглянем в прошлое: как организации исторически воспринимали данные и методы их анализа? Эта картина поможет нам понять, как относиться к ним теперь и как можно использовать эти четыре уровня для достижения успеха.

Итак, организации, данные и дата-аналитика: исторический аспект. Организации всегда вкладывали много средств в технологии, программное обеспечение и инструменты работы с данными. ПО и технологии считались манной небесной, все были уверены, что с их помощью можно найти любые решения в области данных и аналитики. Руководители инвестировали в технологии, которые могли помочь им добиться целей и воплотить в жизнь самые смелые мечты из области данных и дата-аналитики (а такие мечты у руководителей есть всегда). Со времен появления самой первой версии Microsoft Excel в 1985 году[15]15
  CIS Poly. History of Microsoft Excel. http://cis.poly.edu/~mleung/CS394/f06/week01/Excel_history.html.


[Закрыть]
(кстати, если вы не в курсе, то сначала эту программу выпустили для Apple Macintosh – странно, правда?) и даже более раннего ПО для электронных таблиц организации постоянно покупали либо продавали ПО, считая, что оно способно все решить, творя некую «магию». Итак, давным-давно существует ПО для хранения, использования и анализа данных и информации. По мере развития и совершенствования технологий также росли и инвестиции в них. По прогнозам, в 2019 году доходы, полученные во всем мире от анализа больших объемов данных и бизнес-информации, должны были составить 187 миллиардов долларов[16]16
  Olavsrud, T. (2016). Big Data and Analytics Spending to hit $187 Billion, CIO, 24 May. https://www.cio.com/article/3074238/big-data-and-analytics-spending-to-hit-187-billion.html.


[Закрыть]
. Этот рынок продолжает развиваться столь же бурно… однако существует и неприятная тенденция. Учитывая нехватку знаний у 24 % людей, ответственных за принятие бизнес-решений, и у 32 % топ-менеджеров, инвестиции в технологии сбора и анализа данных не приносят ожидаемых результатов. Эта нехватка знаний, о которой мы говорили в первой главе, мешает инвестициям приносить свои плоды.

Итак, каким же образом понимание четырех уровней аналитических методов влияет на грамотное внедрение технологий и возврат инвестиций в данные и аналитику? Когда организации и сотрудники разберутся, как работают все четыре уровня, это позволит понять, как коллектив и отдельные сотрудники со своими индивидуальными навыками при посредстве технических возможностей могут совместно построить правильную стратегию работы с данными и дата-аналитикой. А затем эту стратегию можно будет применить.

Четыре уровня аналитических методов

А сейчас, после краткого экскурса в историю, давайте попробуем разобраться в самих четырех уровнях аналитики. Затем мы покажем вам, как сотрудники на самых разных уровнях, от рядовых работников до топ-менеджеров, могут применять эти четыре уровня: 1) для продвижения стратегии работы с данными и аналитикой; 2) для принятия более разумных решений на основе данных; 3) для формирования правильного видения данных и аналитики. Понимание четырех уровней аналитики позволяет организации не стрелять по мишени вслепую, а осуществлять реальную работу по формированию стратегии.

Как уже говорилось выше, четыре уровня аналитических методов – это дескриптивный, диагностический, предиктивный и прескриптивный (см. рис. 2.1). Чтобы получить прочные базовые представления о каждом уровне, давайте для начала рассмотрим их определения и примеры. Кроме того, мы также познакомимся с конкретными программами и технологиями, соответствующими каждому уровню. Затем, разобравшись с каждым уровнем, мы увидим, как они работают в комплексе: формируют правильную аналитическую картину и помогают организации успешно освоить инвестиции в данные.



Прежде чем перейти к первому уровню, давайте разберемся, что на самом деле в нашем контексте означает слово «аналитика». Мы слышим его постоянно, но известно ли нам его истинное значение?

Если взглянуть на определение нужного нам значения слова «аналитика», то окажется, что аналитика – это «систематический вычислительный анализ данных или статистики»[17]17
  Lexico.com, определение Analytics. https://www.lexico.com/en/definition/analytics.


[Закрыть]

Внимание! Это ознакомительный фрагмент книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента ООО "ЛитРес".
Страницы книги >> Предыдущая | 1 2

Правообладателям!

Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Топ книг за месяц
Разделы







Книги по году издания