Книги по бизнесу и учебники по экономике. 8 000 книг, 4 000 авторов

» » Читать книгу по бизнесу Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний Джеффри Уэст : онлайн чтение - страница 2

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Правообладателям!

Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?

  • Текст добавлен: 11 апреля 2018, 16:09

Текст бизнес-книги "Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний"


Автор книги: Джеффри Уэст


Раздел: Жанр неизвестен


Возрастные ограничения: +16

Текущая страница: 2 (всего у книги 5 страниц)

4. Энергия, метаболизм и энтропия

Рассмотрение этих проблем приводит к естественному вопросу: откуда берутся все остальные жизненные масштабы? Почему, например, мы спим каждую ночь приблизительно по восемь часов, в то время как мыши спят по пятнадцать, а слоны – всего по четыре? Почему самые высокие деревья вырастают до сотни метров, а не до километра? Почему крупнейшие компании перестают расти, когда их активы достигают половины триллиона долларов? И почему в каждой из наших клеток содержится около пятисот митохондрий?

Чтобы ответить на такие вопросы и добиться численного и механистического понимания таких процессов, как старение и смертность, идет ли речь о людях, слонах, городах или компаниях, прежде всего необходимо понять, как именно растут все эти системы и как они остаются в живых. В биологии управление ростом и жизнью, а также их поддержку обеспечивает процесс обмена веществ – метаболизм. Его численным выражением служит уровень метаболизма, то есть количество энергии в секунду, необходимое для поддержания жизни организма. Для человека он равен 2000 пищевых калорий[11]11
  Возможно, следует напомнить, что пищевой калорией (или большой калорией) сейчас принято называть, строго говоря, килокалорию, равную тысяче «малых калорий», или 4184 Дж. – Прим. перев.


[Закрыть]
в сутки, что, как это ни удивительно, соответствует приблизительно 90 ваттам, то есть мощности обычной лампочки накаливания. Как видно на рис. 1, мы имеем уровень метаболизма, «правильный» для млекопитающего наших размеров. Таков наш биологический метаболизм, соответствующий существованию животного, развившегося естественным путем. Животному общественному, живущему теперь в городе, для выживания по-прежнему требуется лишь пища в количестве, соответствующем мощности лампочки, но кроме того, ему теперь необходимы дома, отопление, освещение, автомобили, дороги, самолеты, компьютеры и так далее. В связи с этим для поддержания существования среднего жителя Соединенных Штатов требуется ошеломляюще большое количество энергии – 11 000 Вт. Этот социальный метаболизм эквивалентен сумме всех потребностей целой дюжины слонов. Кроме того, при этом переходе из биологической сферы в социальную наша суммарная численность возросла с нескольких миллионов до семи с лишним миллиардов. Неудивительно, что нам грозят энергетические кризисы и нехватка природных ресурсов.

Ни одна из этих систем, ни «естественная», ни рукотворная, не может работать без непрерывного притока энергии и других ресурсов, которые нужно преобразовывать в нечто «полезное». Я позаимствую биологическую концепцию и буду называть все такие процессы преобразования энергии метаболизмом. В зависимости от сложности данной системы получаемая полезная энергия может распределяться между выполнением физической работы, пополнением энергетических запасов организма, ростом и воспроизводством. У человека, заметно отличающегося от всех прочих существ, значительная часть метаболической энергии расходуется на формирование сообществ и организаций – городов, деревень, компаний и коллективов, – на изготовление необычайно разнообразных артефактов и воплощение поразительно широкого спектра идей, от самолетов, сотовых телефонов и соборов до симфоний, математических теорем, литературных произведений и многого, многого другого.

Однако мы часто забываем о том, что без непрерывного поступления энергии и природных ресурсов не может быть не только изготовления всех этих вещей, но и, что, быть может, еще более важно, вообще никаких идей, инноваций, роста или развития. Энергия первична. Она лежит в основе всего, что мы делаем, и всего, что происходит вокруг нас. Поэтому ее значение для всех рассматриваемых вопросов будет еще одним лейтмотивом, проходящим через всю эту книгу. Каким бы очевидным ни казалось это соображение, в концептуальном мышлении экономистов и социологов обобщенное понятие энергии играет на удивление малую роль, если вообще принимается во внимание.

За преобразование энергии всегда приходится платить – бесплатных завтраков не бывает. Поскольку энергия лежит в основе преобразований и работы буквально всего, работа ни одной системы не обходится без последствий. Собственно говоря, существует такой ненарушимый фундаментальный закон природы, называемый Вторым началом термодинамики, который гласит, что при любом преобразовании энергии в полезную форму происходит и производство низкокачественного побочного продукта, «бесполезной энергии». Этот процесс неизбежно сопровождается «непреднамеренными последствиями» в форме неорганизованного выделения недоступной для использования теплоты или непригодных к использованию продуктов. Вечный двигатель невозможен[12]12
  Строго говоря, Второе начало термодинамики утверждает невозможность вечного двигателя второго рода, то есть машины, превращающей в работу все тепло, извлекаемое из окружающих тел. – Прим. ред.


[Закрыть]
. Чтобы жить, чтобы поддерживать и обслуживать высокоорганизованные функции разума и тела, нам необходимо есть. Но после еды нам рано или поздно бывает нужно сходить в туалет. В этом заключается физическое проявление нашего личного вклада в увеличение энтропии.

Немецкий физик Рудольф Клаузиус в 1865 г. назвал это фундаментальное, всеобщее свойство, порожденное происходящим путем обмена энергией и другими ресурсами взаимодействием между всеми сущностями, энтропией. При каждом использовании или преобразовании энергии для создания или поддержания порядка в замкнутой системе неизбежно появляется некоторый беспорядок: энтропия всегда возрастает. Кстати говоря, само греческое слово ἐντροπία означает «превращение» или «развитие». Чтобы вы не подумали, что этот закон можно как-нибудь нарушить, стоит процитировать мнение, высказанное по этому поводу Эйнштейном: «Это единственная физическая теория общего содержания, относительно которой я убежден, что… она никогда не будет опровергнута». Он не исключал из этого утверждения и свои собственные законы относительности.

Второе начало термодинамики неизбежно угрожает нам и всему, что нас окружает, подобно смерти, налогам и дамоклову мечу. Диссипативные силы, аналогичные неорганизованному выделению теплоты при трении, непрерывно и неостановимо увеличивают износ любых систем. Сколь угодно блестяще спроектированная машина, сколь угодно творчески организованная компания, сколь угодно высокоразвитый организм не могут избежать встречи с этим беспощаднейшим из жнецов[13]13
  Grim Reaper – «беспощадный (или мрачный) жнец» – расхожий в английском языке образ смерти, обычно изображаемой в виде скелета с косой. – Прим. перев.


[Закрыть]
. Поддержание порядка и структуры в развивающейся системе требует непрерывной подачи и использования энергии, побочным продуктом которых является возникновение беспорядка. Именно поэтому нам нужно есть, чтобы оставаться в живых, чтобы бороться с неизбежными, разрушительными силами производства энтропии. Энтропия убивает. В конечном счете на всех нас действуют «износ и амортизация» во всех своих многочисленных видах. Борьба с энтропией путем непрерывного потребления все новой энергии для роста, обновления, содержания и восстановления, которая становится все более и более трудной по мере старения системы, лежит в основе любого серьезного обсуждения старения, смертности, жизнестойкости и устойчивости, будь то в применении к организмам, компаниям или городам.

5. Размер все-таки важен: масштабирование и нелинейное поведение

В основном я буду рассматривать все эти разнообразные и, как может показаться, не связанные друг с другом вопросы через призму масштаба, оставаясь при этом в рамках концептуальной системы естественных наук. Масштабы и масштабирование, то есть то, как нечто изменяется при изменении размеров, а также основные правила и принципы, которым они подчиняются, составляют центральную тематику всей этой книги и используются в качестве отправных точек почти всех представленных в ней рассуждений. При рассмотрении с этой точки зрения оказывается, что возникновение и принципы действия городов, компаний, растений, животных, нашего тела и даже опухолей имеют поразительно сходные черты. Каждая из этих систем представляет собой интереснейшую вариацию на общую, универсальную тему, которая проявляется в на удивление систематических математических закономерностях и сходствах их организации, структуры и динамики. Я покажу, что такие сходства вытекают из широкой, обобщенной концептуальной структуры, позволяющей получить общий объединяющий метод понимания всех этих разнородных систем, а также рассмотреть, проанализировать и разрешить многие фундаментальные вопросы.

В простейшем смысле этого слова масштабирование попросту обозначает то, как система реагирует на изменение своих размеров. Что происходит с городом или компанией, когда их размер увеличивается в два раза? Что произойдет со зданием, самолетом, экономикой или животным, если их размер в два раза уменьшится? Если население города удвоится, будет ли в получившемся городе иметься приблизительно вдвое больше дорог, совершаться вдвое больше преступлений и создаваться вдвое больше патентов? Удваиваются ли доходы компании при удвоении объема продаж и требуется ли животному половинного веса вдвое меньше пищи?

Рассмотрение таких, казалось бы, невинных вопросов о реакции систем на изменение их размеров приводит к замечательно глубоким выводам во всех отраслях науки и техники и оказывает влияние чуть ли не на все аспекты нашей жизни. Изучение масштабирования стало основой глубокого понимания динамики граничных состояний и фазовых переходов (например, замерзания жидкостей в твердые вещества или их испарения в газообразное состояние) или хаотических явлений (например, «эффекта бабочки», который якобы приводит к тому, что взмах крыльев бабочки в Бразилии вызывает ураган во Флориде), открытия кварков (структурных элементов материи), объединения фундаментальных сил природы и эволюции Вселенной после Большого взрыва. Это лишь несколько наиболее ярких иллюстраций той решающей роли, которую аргументы, связанные с масштабированием, сыграли в освещении важных универсальных принципов или структур[14]14
  И между прочим, в получении нескольких Нобелевских премий.


[Закрыть]
.

В практическом контексте масштабирование играет жизненно важную роль в проектировании все более крупных рукотворных объектов и машин – зданий, мостов, кораблей, самолетов и компьютеров, – в котором поиск действенных и экономичных методов экстраполяции от малого к большому остается неизменно трудной задачей. Еще более трудную и, возможно, более острую проблему представляет собой понимание принципов масштабирования организационной структуры все более крупных и сложных социальных организаций – компаний, корпораций, городов и правительств. Принципы, лежащие в основе этих непрерывно развивающихся, сложных адаптивных систем часто оказываются еще менее понятными.

Существенно недооцененной остается и та скрытая роль, которую масштабирование играет в медицине. Значительная часть научно-технических исследований, касающихся болезней, новых лекарств и лечебных процедур, проводится с использованием в качестве «модельной» системы мышей. Отсюда немедленно возникает жизненно важный вопрос: каким образом результаты этих исследований и экспериментов можно масштабировать на человека? Например, на исследования рака у мышей каждый год тратятся огромные средства. При этом у мыши в среднем возникает за год гораздо больше опухолей на грамм тканей, чем у человека, а у китов их и вовсе почти не бывает. Спрашивается, насколько применимы результаты таких исследований к человеку? Можно сформулировать эту мысль несколько иным образом: чтобы такие исследования позволили нам получить глубокое понимание и решение проблемы рака у человека, нам необходимо точно знать, как масштабируется организм – как при увеличении размеров, от мыши к человеку, так и при их уменьшении, от китов к меньшим животным. Такие дилеммы будут обсуждаться в главе 4, в которой мы будем рассматривать проблемы масштабирования, присущие биологии, медицине и здравоохранению.

Здесь я хотел бы заново рассмотреть отдельные широко используемые концепции и термины, многим из нас до некоторой степени знакомые – поскольку они употребляются в повседневной речи, – но часто неверно понимаемые. Это позволит нам в самом начале наших исследований ввести некоторые из понятий, используемых на протяжении всей этой книги, и обеспечить одинаковое их понимание.

Итак, вернемся к заданному выше простому вопросу: требуется ли животному половинного веса вдвое меньше пищи? Можно предположить, что ответ на этот вопрос будет утвердительным, так как уменьшение веса в два раза означает двукратное уменьшение числа клеток, которым требуется питание. Из этого следовало бы, что «вдвое меньшему нужно вдвое меньше» и, наоборот, «вдвое большему нужно вдвое больше». Здесь мы находим простейший пример классического линейного мышления. Как это ни удивительно, линейное мышление, несмотря на всю его кажущуюся простоту, не всегда легко распознать, потому что оно часто подразумевается, но не выражается явно.

Например, обычно остается непонятым тот факт, что повсеместное использование подушных измерений для описания и составления рейтингов стран, городов, компаний и экономических систем – это скрытое проявление такого мышления. Возьмем простой пример. В 2013 г. валовой внутренний продукт (ВВП) США оценивался приблизительно в 50 тысяч долларов на душу населения, то есть можно сказать, что в среднем по всей национальной экономике каждый человек произвел «товаров» на 50 тысяч долларов. Поскольку ВВП агломерации Оклахома-Сити, население которой составляет около 1,2 миллиона человек, равен приблизительно 60 миллиардам долларов, ее ВВП на душу населения (60 миллиардов, разделенные на 1,2 миллиона) действительно близок к среднему по Соединенным Штатам, то есть 50 тысячам. Если экстраполировать эти данные на город в десять раз больший, с населением 12 миллионов человек, его ВВП должен быть равен 600 миллиардам (произведению 50 тысяч на душу населения на 12 миллионов человек), то есть в десять раз больше, чем у Оклахома-Сити. Однако на самом деле ВВП агломерации Лос-Анджелеса, которая именно в десять раз больше, чем Оклахома-Сити, и имеет 12 миллионов населения, превышает 700 миллиардов долларов, что отличается от результата линейной интерполяции, неявно заложенной в применении подушных измерений, более чем на 15 %.

Разумеется, это всего лишь один пример, который можно считать особым случаем: Лос-Анджелес просто богаче, чем Оклахома-Сити. Хотя это и так, оказывается, что недооценка, получаемая при сравнении Оклахома-Сити с Лос-Анджелесом, – вовсе не особый случай. Напротив, это пример общей систематической тенденции, справедливой для всех городов всего мира: простая линейная пропорциональность, неявно заложенная в подушные измерения, почти никогда не дает верных результатов. ВВП, как и почти все другие измеряемые характеристики города – да и почти всех сложных систем вообще, – обычно масштабируется нелинейным образом. Впоследствии я буду более точно говорить о том, что это значит и что из этого следует, но пока можно просто считать, что нелинейное поведение означает, что измеряемые характеристики системы не просто увеличиваются вдвое при удвоении ее размеров. Так, в приведенном примере можно сказать, что по мере увеличения размеров города происходит систематический рост величины подушного ВВП, а также средней зарплаты, уровня преступности и многих других характеристик города. Это отражает одну существенную особенность всех городов, а именно тот факт, что социальная активность и экономическая производительность систематически возрастают с ростом численности населения. Экономисты и социологи называют такую систематическую «прибавку к стоимости» увеличенной отдачей от масштаба, а физики предпочитают более привлекательный термин – суперлинейное масштабирование.

Важный пример нелинейного масштабирования можно найти в биологии, если рассмотреть количество пищи и энергии, ежедневно потребляемых животными (в том числе и нами) для выживания. Как ни странно, животному, большему другого в два раза и, следовательно, состоящему приблизительно из удвоенного числа клеток, ежедневно требуется пищи и энергии всего на 75 % больше, а не на 100 %, как можно было бы заключить из наивной линейной экстраполяции. Например, женщине, весящей 54 кг, для простого выживания без какой-либо деятельности или выполнения каких-либо задач требуется в среднем около 1300 пищевых калорий в сутки. Биологи и врачи называют эту величину основным обменом, в отличие от активного метаболизма, который включает в себя всю связанную с жизнью суточную активность. В то же время ее собаке, крупному бобтейлу, который весит в два раза меньше хозяйки (27 кг) и, следовательно, имеет приблизительно в два раза меньше клеток, казалось бы, нужно для выживания в два раза меньше пищевой энергии, то есть около 650 пищевых калорий. На самом же деле такой собаке требуется около 880 пищевых калорий в сутки.

Хотя собака – это не уменьшенная женщина, этот пример является частным случаем общего правила масштабирования метаболизма в зависимости от размеров. Оно действует для всего спектра млекопитающих, от мельчайших землероек весом всего несколько граммов до гигантских синих китов, весящих в сотни миллионов раз больше. Фундаментальное следствие из этого правила состоит в том, что более крупное животное (в этом примере – женщина) имеет больший удельный коэффициент полезного действия на грамм массы, чем животное меньшего размера (ее собака), так как для поддержки существования каждого грамма его тела требуется меньше энергии (приблизительно на 25 %). К слову, у ее лошади этот КПД будет выше. Такое систематическое повышение производительности с увеличением размера известно под названием экономии на масштабе. В самых общих чертах этот принцип гласит, что чем больше размер, тем меньше ресурсов на душу населения (или, в случае животных, на клетку или на грамм массы тела) требуется для выживания. Отметим, что такое поведение противоположно случаю увеличенной отдачи от масштаба, которая проявлялась в ВВП городов: если там подушная величина возрастала с увеличением размеров, то в случае экономии на масштабе подушная величина становится тем меньше, чем больше размер. Такое масштабирование называют сублинейным масштабированием.

Размеры и масштаб играют важную роль в определении черт поведения, общих для чрезвычайно сложных, развивающихся систем, и значительная часть этой книги посвящена объяснению и пониманию такого нелинейного поведения, а также возможностей его использования для рассмотрения широкого круга вопросов, примеры которых взяты из самых разных отраслей науки, техники, экономики и бизнеса, а также повседневной жизни, научной фантастики и спорта.

6. Масштабирование и сложность: возникновение, самоорганизация и жизнестойкость

На немногочисленных предшествующих страницах я уже успел несколько раз употребить термин сложность и бесцеремонно называл системы сложными, как если бы это название было и хорошо понятным, и точно определенным. На самом деле и то и другое неверно, и я хотел бы сделать здесь небольшое отступление, чтобы поговорить об этом изрядно перегруженном понятии. Дело в том, что почти все те системы, о которых я собираюсь говорить, обычно считают «сложными».

Далеко не я один использую это слово и его многочисленные производные походя, не давая ему определения. За последнюю четверть века такие термины, как сложные адаптивные системы, теория сложности, эмерджентное поведение, самоорганизация, жизнестойкость и адаптивная нелинейная динамика, начали распространяться не только в научной литературе, но и в публикациях делового и корпоративного мира, а также в неспециальных средствах массовой информации.

Чтобы подготовить почву для этого разговора, я хотел бы процитировать двух выдающихся мыслителей, физика и юриста. Первый из них – это знаменитый физик Стивен Хокинг. На рубеже этого тысячелетия он давал интервью[15]15
  Интервью со Стивеном Хокингом приводится в статье: Unified Theory Is Getting Closer, Hawking Predicts // San Jose Mercury News. 2000. Jan. 23. www.mercurycenter.com/resources/search.


[Закрыть]
, в котором ему задали следующий вопрос:

– Некоторые утверждают, что если ХХ век был веком физики, то сейчас мы стоим на пороге века биологии. Что вы об этом думаете?

Хокинг ответил:

– Я думаю, что следующий век будет веком сложности.

Я всецело разделяю это мнение. Как, надеюсь, я уже объяснил, для решения множества встающих перед нами сложных общественных проблем нам срочно нужна теория сложных адаптивных систем.

Вторая цитата – это хорошо известное высказывание Поттера Стюарта, выдающегося судьи Верховного суда США. Во время обсуждения концепции порнографии и ее отношения к свободе слова при рассмотрении исторического дела 1964 г. он высказал следующее замечание:

Я не стану сейчас пытаться более точно определить, какие материалы, по моему мнению, подпадают под это краткое описание [ «жесткой порнографии»]; может быть даже, я никогда не смогу дать этому более внятное определение. Однако, когда я увижу порнографию, я ее узнаю.

Если подставить вместо слов «жесткая порнография» слово «сложность», получится именно то, что могут сказать многие из нас: возможно, мы не можем определить ее, но мы узнаем ее, когда увидим.

К сожалению, однако, если «узнавать, когда увидишь» и достаточно для Верховного суда США, то науке этого мало. Наука тем и славится, что ее развитие основывается на четкости и достоверности описания предметов, которые она изучает, и концепций, которые она использует. Как правило, мы требуем, чтобы они были точными, недвусмысленными и потенциально измеримыми. В качестве классических примеров величин, точно определенных в физике, но используемых в обиходном или метафорическом смысле в повседневном языке, можно вспомнить об импульсе, энергии и температуре. При этом, однако, существует немалое число действительно важных концепций, точное определение которых все еще вызывает нешуточные споры. В их число входят понятия жизни, инноваций, сознания, любви, устойчивости, города и, между прочим, сложности. Поэтому я не буду пытаться дать научное определение сложности, а изберу промежуточный путь и опишу то, что я считаю существенными элементами типичных сложных систем, по которым мы сможем узнать их, когда увидим, и отличить их от систем, которые можно назвать простыми или «просто» очень усложненными, но не обязательно сложными. Это обсуждение ни в коем случае не следует считать полным, но оно должно помочь в понимании наиболее заметных черт того, что мы подразумеваем под названием сложных систем[16]16
  Освещению создаваемой сейчас теории сложности посвящено довольно много популярных книг, в том числе: M. Mitchell. Complexity: A Guided Tour. N. Y.: Oxford University Press, 2008; M. M. Waldrop. Complexity: The Emerging Science at the Edge of Order and Chaos. N. Y.: Simon & Schuster, 1993; J. Gleick. Chaos: Making a New Science. N. Y.: Viking Penguin, 1987; S. A. Kauffman. At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford, UK: Oxford University Press, 1995; J. H. Miller. A Crude Look at the Whole: The Science of Complex Systems in Business, Life, and Society. N. Y.: Basic Books, 2016.


[Закрыть]
.

Типичная сложная система состоит из великого множества индивидуальных составляющих, или агентов, которые, будучи собраны вместе, приобретают коллективные характеристики, обычно не проявляющиеся в свойствах самих отдельных компонентов и непредсказуемые на их основе. Например, вы – нечто гораздо большее, чем сумма составляющих вас клеток, а каждая из ваших клеток точно так же есть нечто гораздо большее, чем сумма всех молекул, из которых она состоит. То, что вы считаете собой – ваше сознание, ваша личность, ваш характер, – есть коллективное проявление множественных взаимодействий между нейронами и синапсами вашего мозга. Они, в свою очередь, непрерывно участвуют во взаимодействиях с клетками других частей вашего тела, многие из которых являются составляющими полуавтономных органов, например сердца или печени. Кроме этого, все они в той или иной степени непрерывно взаимодействуют с окружающим миром. Более того, каким бы парадоксальным это ни казалось, ни одна из приблизительно 100 триллионов клеток, составляющих ваше тело, не обладает свойствами, которые вы признали или определили бы в качестве именно вашей сущности; ни одна из них также не осознает и не знает, что является вашей составной частью. Каждая из них, так сказать, обладает своими собственными конкретными характеристиками и следует своим собственным правилам поведения и взаимодействия, в результате чего почти что чудом образует совместно со всеми остальными клетками вашего тела то, чем являетесь вы. И это происходит, несмотря на широчайший диапазон масштабов, как пространственных, так и временных, действующих в вашем теле, от микроскопического молекулярного уровня до макроскопических масштабов вашей повседневной жизни в течение всей ее продолжительности, до сотни лет. Вы – настоящий эталон сложной системы.

Аналогичным образом город – это нечто гораздо большее, чем простая сумма его зданий, дорог и жителей, компания – нечто гораздо большее, чем простая сумма ее сотрудников и продукции, а экосистема – нечто гораздо большее, чем простая сумма населяющих ее растений и животных. Экономические результаты, динамика жизни, творческая атмосфера и культура города или компании возникают из нелинейной природы множественных механизмов обратной связи, воплощенных во взаимодействиях между их жителями или сотрудниками, их инфраструктурой и окружающей средой.

Замечательный пример такой системы дает знакомый всем нам муравейник. Всего за несколько дней муравьи буквально строят свой город с нуля, собирая его по крупинке. Они возводят замечательные здания, в которых есть многоуровневые сети туннелей и камер, вентиляционные системы, продуктовые склады и инкубаторы, причем для поддержки всего этого предусмотрены сложные транспортные сети. Лучшие из наших инженеров, архитекторов и градостроителей признали бы эффективность, прочность и функциональность этих построек достойными самых высоких наград, если бы у них были проектировщики и строители. Однако никаких маленьких, но гениальных (да, собственно говоря, даже и посредственных) муравьев-инженеров, муравьев-архитекторов и муравьев-градостроителей нет и никогда не было. Тут нет никого главного.

Муравейники строятся без предварительного обдумывания и без помощи индивидуального разума или коллективных обсуждений или консультаций. Нет ни чертежей, ни проектов. Есть лишь тысячи муравьев, которые бездумно работают вслепую, перемещая миллионы крупинок земли и песка, из которых и складываются эти впечатляющие постройки. Это достижение – результат того, что каждый отдельный муравей следует всего нескольким простым правилам, передаваемым ему химическими стимулами и другими сигналами, а все вместе они совершают поразительно согласованную коллективную работу. Почти что можно подумать, что муравьи запрограммированы на выполнение микроскопических операций в рамках одного гигантского компьютерного алгоритма.

Кстати об алгоритмах. компьютерные модели таких процессов успешно воспроизводят результаты такого типа, в которых сложное поведение возникает из непрерывного повторения действий индивидуальных агентов по чрезвычайно простым правилам. Эти модели придали вес идее о том, что умопомрачительные динамика и организация систем высокой сложности происходят из очень простых правил, управляющих взаимодействием между их отдельными составляющими. Это открытие стало возможным лишь около тридцати лет назад, когда появились компьютеры, достаточно мощные для выполнения таких крупномасштабных расчетов. Сегодня такие вычисления легко можно произвести на обычном портативном компьютере. Эти компьютерные исследования сыграли важную роль в получении убедительного подтверждения идеи о том, что в основе сложности, которую мы наблюдаем во многих таких системах, на самом деле может лежать простота, и, следовательно, эти системы могут быть доступны для научного анализа. Так в поле нашего зрения появилась теоретическая возможность создания серьезной численной теории сложности, к которой мы еще вернемся.

Таким образом, общая характеристика сложной системы, вообще говоря, состоит в том, что ее целое больше, чем простая линейная сумма ее составных частей, – и зачастую существенно отличается от нее. Во многих случаях кажется, что такое целое живет своей жизнью, почти ничем не связанной с конкретными характеристиками отдельных составляющих его элементов. Более того, даже если мы понимаем, как взаимодействуют между собой индивидуальные составляющие, будь то клетки, муравьи или люди, это обычно не позволяет нам предсказать системное поведение образованного ими целого. Этот коллективный результат, в котором система проявляет свойства, существенно отличные от получающихся при простом сложении отдельных вкладов всех составляющих ее элементов, называют эмерджентным поведением. Оно является хорошо заметной особенностью экономических систем, финансовых рынков, городских сообществ, компаний и организмов.

Самый важный урок, который мы извлекаем из этих исследований, заключается в том, что во многих из таких систем нет центрального управления. Например, при строительстве муравейника ни один из муравьев не имеет никакого понятия о том грандиозном предприятии, в котором он участвует. Муравьи некоторых видов даже используют в качестве строительного материала для сооружения своих замысловатых построек свои собственные тела: кочевые муравьи и огненные муравьи сцепляются в плоты и мосты, которые они используют для преодоления водных преград и других препятствий, встречающихся им в набегах за продовольствием. Здесь речь идет о так называемой самоорганизации. Это эмерджентное поведение, в рамках которого составные части объединяются, образуя эмерджентное (вновь возникающее) целое. Это же происходит при образовании социальных групп людей – например, книжных клубов или политических кампаний, – человеческих органов, которые можно считать результатом самоорганизации составляющих их клеток, или же городов, в которых можно увидеть проявление самоорганизации их жителей.

С концепциями эмерджентности и самоорганизации тесно связана еще одна важная характеристика сложных систем – их способность к адаптации и развитию в случае изменения внешних условий. Разумеется, наилучшим примером такой сложной адаптивной системы является сама жизнь во всех своих необычайных проявлениях, от клеток до городов. Разумеется, дарвиновская теория естественного отбора – это научная концепция, созданная именно для того, чтобы объяснить и описать непрерывный процесс развития организмов и экосистем и их адаптации к изменяющимся условиям.

Изучение сложных систем научило нас осторожному отношению к наивному разбиению систем на независимо действующие составные части. Более того, малое возмущение в одной из частей системы может привести к гигантским последствиям в других ее частях. Системе могут быть свойственны внезапные и, по-видимому, непредсказуемые изменения – классическим примером таких изменений можно считать биржевой крах. Одна или несколько тенденций могут усиливать другие тенденции в контуре с положительной обратной связью, в результате чего такой процесс быстро становится неуправляемым и переходит через пограничное состояние, по другую сторону которого поведение системы изменяется самым радикальным образом. Весьма зрелищным проявлением этого процесса был глобальный крах финансовых рынков 2008 г., имевший потенциально катастрофические социальные и экономические последствия для всего мира, порожденный неправильным пониманием динамики местечкового и сравнительно локализованного рынка американской недвижимости.

Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая

Правообладателям!

Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Топ книг за месяц
Разделы







Книги по году издания