Правообладателям!
Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.Читателям!
Оплатили, но не знаете что делать дальше?Текст бизнес-книги "Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний"
Автор книги: Джеффри Уэст
Раздел: Жанр неизвестен
Возрастные ограничения: +16
Текущая страница: 4 (всего у книги 5 страниц)
9. Компании и предприятия
Область применения этих идей естественно расширить, чтобы попытаться узнать, насколько они применимы к компаниям. Может ли существовать численная, обладающая предсказательной силой теория компаний? Проявляют ли компании систематические регулярные черты, не зависящие от их размеров и сферы деятельности? Например, можно ли считать, что в том, что касается торгового оборота и размеров активов, компании Walmart и Google, доходы которых превышают полтриллиона долларов, – это приблизительно увеличенные версии более мелких компаний с объемом продаж менее 10 миллионов? Как это ни удивительно, ответ на этот вопрос получается утвердительным, как видно из рис. 4: компании, подобно организмам и городам, также подчиняются простым степенным законам масштабирования. Не менее удивительно и то, что их масштабирование в зависимости от размеров сублинейно, а не суперлинейно, как социально-экономические параметры городов. В этом отношении компании гораздо более похожи на живые организмы, чем на города. Степенной показатель масштабирования компании составляет около 0,9, в то время как для городских инфраструктур он был равен 0,85, а для организмов – 0,75. Однако колебания вокруг точного уровня масштабирования у компаний гораздо больше, чем у организмов или городов. Особенно велики эти колебания на ранних стадиях развития компаний, на которых они еще сражаются за место на рынке. Тем не менее удивительная регулярность, проявляющаяся в среднем в их поведении, заставляет предположить, что, несмотря на их широкое разнообразие и кажущуюся индивидуальность, рост и деятельность компаний подчиняются общим ограничениям и принципам, не зависящим ни от их размера, ни от области их работы.
Сублинейное масштабирование метаболизма организмов обеспечивает прекращение их роста и определяет их размер в зрелом состоянии, который остается приблизительно неизменным до самой их смерти. Сходная жизненная траектория действует и для компаний. В первые годы своего существования они быстро растут, но по мере приближения к зрелости этот рост замедляется, и, если компания вообще выживает, она рано или поздно перестает расти относительно ВВП. В юности, когда компании пытаются оптимизировать свою рыночную позицию, развитие многих из них определяет целый спектр инновационных идей. Однако по мере их роста и стабилизации их положения диапазон их продукции неизбежно сужается, причем одновременно с этим они вынуждены развивать значительную административную и бюрократическую структуру. Сравнительно быстро экономия на масштабе и сублинейное масштабирование, отражающие задачи эффективного управления большой и сложной организацией, начинают доминировать над инновациями и идеями, заключенными в суперлинейном масштабировании, и это в конце концов приводит к застою и смерти. Половина всех предприятий любого из поколения компаний, котирующихся на американских биржах, исчезает в течение десяти лет, и лишь немногие доживают до пятидесяти, не говоря уже о ста[22]22
M. I. G. Daepp et al. The Mortality of Companies // Journal of the Royal Society Interface. 2015. 12. 20150120.
[Закрыть].
По мере роста компании, как правило, становятся все более и более одномерными, что отчасти бывает вызвано воздействием рыночных сил, но также связано с неизбежным окостенением направленных сверху вниз административных и бюрократических потребностей, которые считаются необходимыми для управления компанией традиционного типа в современную эпоху. Осуществление изменений, адаптации и переосмысления становится все более затруднительным, особенно с учетом непрерывного ускорения социально-экономических часов и все большего роста скорости изменения условий существования. В то же время города по мере роста своих размеров становятся все более многомерными. Кроме того, города разительно отличаются от большинства компаний тем, что их разнообразие, определенное по числу разных типов работ и предприятий, образующих их экономический пейзаж, систематически и непрерывно возрастает с увеличением размеров города вполне предсказуемым образом. С учетом этого неудивительно, что кривые роста и смертности компаний чрезвычайно похожи на соответствующие кривые роста и смертности живых организмов. В обоих случаях наблюдаются систематически сублинейное масштабирование, экономия на масштабе, ограниченный рост и конечная продолжительность жизни. Более того, вероятность смерти, которую обычно называют уровнем смертности и определяют как частоту смертей относительно числа остающихся в живых, неизменна независимо от возраста животного или компании. Смертность котирующихся на бирже компаний в результате поглощений, слияний и банкротств остается той же независимо от того, насколько они солидны и чем они занимаются. Механистические основы понимания роста, смертности и организационной динамики компаний, а также их сравнение и противопоставление с ростом и смертностью живых организмов и неограниченным ростом и кажущимся «бессмертием» городов будут более подробно обсуждаться в главе 9.
Глава 2. Мера всех вещей
Введение в масштабирование
Прежде чем обратиться к многочисленным проблемам и вопросам, упомянутым во вступительной главе, я хотел бы посвятить эту главу общему введению в некоторые базовые концепции, которые используются во всем остальном тексте этой книги. Хотя некоторые из читателей могут быть уже знакомы с этим материалом, я хочу быть уверен в том, что все мы понимаем его одинаково.
Этот обзор составлен главным образом в историографическом ключе: он начинается с Галилея и объяснения того, почему не могут существовать гигантские насекомые, и заканчивается лордом Рэлеем и объяснением того, почему небо синее. Между этими пунктами я коснусь Супермена, ЛСД и дозировки медикаментов, индексов массы тела, кораблекрушений и истоков теории моделирования, а также связи всего этого с происхождением и природой инноваций и пределов роста. Я хочу использовать эти примеры прежде всего для того, чтобы дать представление о концептуальных возможностях математического мышления, ориентирующегося на понятие масштаба.
1. От Годзиллы до Галилея
Я, как и многие другие ученые, время от времени получаю от журналистов просьбы об интервью, обычно по каким-нибудь вопросам или проблемам, касающимся городов, урбанизации, окружающей среды, устойчивости, сложности или Института Санта-Фе, а иногда даже бозона Хиггса. Вообразите же мое удивление, когда ко мне обратилась одна журналистка из «Популярной механики» (Popular Mechanics), которая сообщила мне, что Голливуд собирается выпустить новую крупнобюджетную версию классического японского фильма «Годзилла», и поинтересовалась моим мнением по этому вопросу. Как вы, возможно, помните, Годзилла – это огромное чудовище, которое главным образом занимается тем, что слоняется по городам (в оригинале 1954 г. – по Токио), сея разрушения и хаос и наводя ужас на население.
Журналистка слышала, что я кое-что знаю о масштабировании, и просила меня «весело, простенько и по-научному рассказать о биологии Годзиллы (в связи с выходом нового фильма)… с какой скоростью такое большое животное может ходить… сколько энергии будет вырабатывать его обмен веществ, сколько оно могло бы весить и т. д.». Разумеется, этот новый американский Годзилла XXI в. был самым крупным из всех воплощений этого персонажа: его рост достигал целых 106 м, более чем вдвое превышая рост чудовища в исходном японском фильме, составлявший «всего» 50 м. Я немедленно ответил, что почти любой ученый, к которому она обратится, скажет ей, что никакое животное типа Годзиллы на самом деле существовать не может. Если бы оно состояло приблизительно из тех же базовых материалов, что и мы (то есть все живые существа), оно было бы нежизнеспособно, так как обрушилось бы под собственным весом.
Научное обоснование этого утверждения сформулировал более четырехсот лет назад, на заре современной науки, Галилей. Самую суть его составляет элегантное рассуждение о масштабировании: Галилей задался вопросом о том, что произойдет, если попытаться бесконечно увеличивать животное, дерево или здание, и выяснил, что у такого увеличения имеются пределы. Его рассуждение стало базовым шаблоном для всех последующих рассуждений о масштабировании вплоть до настоящего времени.
Галилея не зря часто называют «отцом современной науки», имея в виду его многочисленные фундаментальные вклады в физику, математику, астрономию и философию. Наверное, более всего известны его легендарные опыты, в которых он бросал предметы разных размеров, изготовленные из разных материалов, с вершины наклонной Пизанской башни, чтобы продемонстрировать, что все они достигают земли за одно и то же время. Это неочевидное наблюдение противоречило Аристотелевой догме, согласно которой тяжелые предметы падают быстрее, чем легкие, и скорость их падения прямо пропорциональна их весу. Это фундаментальное заблуждение никем не подвергалось сомнению в течение почти двух тысяч лет, пока Галилей наконец не проверил его на опыте. Задним числом кажется удивительным, что до исследований Галилея никто, по-видимому, не задумывался о справедливости этого «самоочевидного факта», не говоря уже о том, чтобы проверить его.
Галилей в возрасте тридцати пяти и шестидесяти девяти лет; он умер менее чем десятью годами позже. Старение и смертность, которые наглядно иллюстрируют эти портреты, подробно обсуждаются в главе 4
Опыт Галилея произвел революцию в нашем фундаментальном понимании движения и динамики и проложил дорогу Ньютону с его знаменитыми законами движения. Эти законы привели к появлению точной, обладающей предсказательной силой численной математической системы понимания любого движения, будь то на Земле или на другом конце Вселенной, объединив тем самым небеса и Землю под властью одних и тех же законов природы. Это не только дало новое определение места человека в мироздании, но и создало эталон для всех последующих научных исследований, в том числе подготовив почву для наступления века Просвещения и научно-технических революций двух последних столетий.
Галилей также знаменит тем, что усовершенствовал конструкцию телескопа и открыл луны Юпитера, что убедило его в справедливости Коперниковой точки зрения на строение Солнечной системы. Однако Галилею пришлось дорого заплатить за последовательное отстаивание гелиоцентрической гипотезы, вытекавшей из его наблюдений. В возрасте шестидесяти девяти лет, тяжелобольным, он предстал перед судом инквизиции, который признал его воззрения еретическими. Он был вынужден отречься от своих взглядов и после недолгого тюремного заключения провел остаток жизни (еще девять лет, в течение которых он ослеп) под домашним арестом. Его книги были запрещены и попали в печально известный ватиканский «Индекс запрещенных книг» (Index Librorum Prohibitorum). Лишь в 1835 г., более двухсот лет спустя, его работы были исключены из этого списка, и только в 1992-м – по прошествии почти четырех веков – папа Иоанн Павел II публично выразил сожаление по поводу обращения церкви с Галилеем. Мысль о том, что какие-то слова, написанные в незапамятные времена на еврейском, греческом и латинском языках, основанные на чьих-то личных мнениях, догадках и предрассудках, могли столь безапелляционно перевешивать результаты научных наблюдений и математическую логику, действует отрезвляюще. Как ни печально это признавать, мы и сегодня не можем похвастаться полной свободой от таких заблуждений.
Несмотря на ужасную трагичность того, что случилось с Галилеем, его заключение принесло человечеству огромную выгоду. Возможно, это произошло бы и в другом случае, но именно находясь под домашним арестом, он написал, вероятно, лучшую свою работу, одно из поистине великих произведений научной литературы, озаглавленное «Беседы и математические доказательства, касающиеся двух новых отраслей науки» (Discorsi e dimostrazioni matematiche intorno a due nuove scienze, 1638)[23]23
Заглавие этой книги часто приводят в сокращенном виде: «Беседы о двух новых науках». Здесь цит. по изданию: Галилей Г. Избранные труды. В 2 т. / Перевод С. Н. Долгова. М.: Наука, 1964.
[Закрыть]. Эта книга, по сути дела, подводит итоги предыдущих сорока лет работы Галилея, в течение которых он пытался разработать систематический подход к задаче логического, рационального понимания окружающего нас природного мира. Этой работой он заложил тот фундамент, на котором впоследствии возникли не менее основополагающие труды Исаака Ньютона и практически вся позднейшая наука. Эйнштейн не преувеличивал, когда, говоря об этой книге, назвал Галилея «отцом современной науки»[24]24
Цитата из Эйнштейна заслуживает того, чтобы привести ее целиком, так как в ней подчеркивается основополагающий принцип точных наук: «Положения, полученные при помощи чисто логических средств, при сравнении с действительностью оказываются совершенно пустыми. Именно потому, что Галилей сознавал это, и особенно потому, что он внушал эту истину ученым, он является отцом современной физики и, фактически, современного естествознания вообще». (Цит. по: Эйнштейн А. О методе теоретической физики // Собрание научных трудов. М.: Наука, 1967. Т. 4. С. 182.)
[Закрыть].
Это великая книга. Несмотря на непривлекательное название и несколько архаичный язык и стиль изложения, ее на удивление приятно и интересно читать. Она написана в форме «бесед» трех человек (Симпличио, Сагредо и Сальвиати), которые встречаются на протяжении четырех дней и обсуждают различные вопросы, великие и малые, ответов на которые искал Галилей. Симпличио символизирует «простого» обывателя, интересующегося устройством мира и задающего ряд вопросов, кажущихся наивными. Сальвиати – ученый (Галилей!), знающий ответы на все вопросы, которые излагаются в авторитетной, но терпеливой манере, а Сагредо играет роль посредника между этими двумя, то подвергая сомнению утверждения Сальвиати, то подбадривая Симпличио.
На второй день своих бесед они переходят к несколько туманному на первый взгляд обсуждению прочности веревок и балок, и как раз в тот момент, когда читатель уже начинает недоумевать, куда приведет этот довольно нудный, перегруженный подробностями разговор, туман рассеивается, все освещается, и Сальвиати делает следующее заявление:
Из того, что было сейчас доказано, мы ясно видим невозможность не только для искусства, но и для самой природы беспредельно увеличивать размеры своих творений. Так, невозможна постройка судов, дворцов и храмов огромнейшей величины, коих весла, мачты, балки, железные скрепы, словом, все части держались бы прочно. Однако и природа не может произвести деревья несоразмерной величины, так как ветви их, отягощенные собственным чрезвычайным весом, в конце концов сломились бы. Равным образом невозможно представить себе костяк человека, лошади или другого живого существа слишком большой величины, который бы держался и соответствовал своему назначению… увеличение размеров до чрезмерной величины имело бы следствием то, что тело было бы раздавлено и сломано тяжестью своего собственного веса[25]25
Галилей Г. Указ. соч., с. 216, 217.
[Закрыть].
Вот и все: Галилей чуть ли не четыреста лет назад предугадал наши параноидальные фантазии о гигантских муравьях, жуках, пауках и тех же самых Годзиллах, столь ярко изображаемые в комиксах и фильмах, а затем самым блестящим образом продемонстрировал их физическую невозможность. Точнее говоря, он показал, что реально достижимая величина всех этих существ ограничена некими фундаментальными пределами. Так что многочисленные образы научной фантастики в области фантастики и остаются.
Рассуждение Галилея отличается элегантностью и простотой, но имеет при этом весьма глубокие следствия. Кроме того, оно служит превосходным введением во многие из тех концепций, которые мы будем рассматривать в следующих главах. Оно состоит из двух частей: геометрического доказательства, демонстрирующего, как масштабируются площадь и объем любого объекта при увеличении его размеров (рис. 5), и инженерного доказательства, показывающего, что прочность колонн, поддерживающих здания, конечностей, на которые опираются животные, или стволов деревьев пропорциональна площади их поперечного сечения (рис. 6).
В следующей рамке приведен общедоступный вариант первого из этих доказательств, показывающего, что если форма объекта неизменна, то при увеличении его размеров все его поверхности увеличиваются пропорционально квадрату, а все его объемы – пропорционально кубу линейных размеров.
Рассуждение галилея о масштабировании поверхностей и объемов
Для начала рассмотрим простейший геометрический объект, например квадратную плитку, и представим себе ее увеличение до большего размера (см. рис. 5). Например, предположим, что длина ее стороны равна 1 м, то есть ее площадь, полученная перемножением длин смежных сторон, равна 1 м × 1 м = 1 м². Если удвоить длины всех ее сторон, увеличить их с 1 до 2 м, то площадь плитки увеличится до 2 м × 2 м = 4 м². Точно так же, если длины сторон утроить (увеличить до 3 м), площадь возрастет до 9 м² – и так далее. Общее правило очевидно: площадь возрастает пропорционально квадрату длины.
Это соотношение остается справедливым не только для квадратов, а для любой двумерной геометрической фигуры, если ее форма остается неизменной при одинаковом увеличении всех линейных размеров. Простой пример дает круг: например, при удвоении его радиуса площадь круга увеличивается в 2 × 2 = 4 раза. В более общем случае удвоение всех линейных размеров вашего дома при сохранении неизменными его формы и конфигурации приведет к увеличению площадей всех поверхностей, например стен и полов, в четыре раза.
Эти же рассуждения можно простым образом перенести на объемы. Для начала рассмотрим простой куб: если длины всех его сторон увеличить в два раза, например с 1 м до 2 м, то его объем увеличится с 1 м³ до 2 × 2 × 2 = 8 м³. Аналогичным образом, если эти длины увеличить втрое, объем возрастет в 3 × 3 × 3 = 27 раз. Как и в случае площади поверхностей, это правило можно обобщить на случай любых объектов произвольной формы, если она сохраняется неизменной, и заключить, что при увеличении любого объекта его объем возрастает пропорционально кубу его линейных размеров
Рис. 5. Иллюстрация масштабирования объемов и площади поверхностей для простейшего случая квадратов и кубов
Рис. 6. Прочность балки или конечности пропорциональна площади их поперечного сечения
При удвоении всех длин
Площадь поверхности увеличивается в 2 × 2 = 4 (22) раза
Объем увеличивается в 2 × 2 × 2 = 8 (23) раз
Таким образом, при увеличении размеров объекта его объем увеличивается гораздо быстрее, чем площадь его поверхностей. Приведем простой пример: при удвоении всех линейных размеров дома с сохранением его формы объем увеличивается в 23 = 8 раз, а площадь помещений – всего в 22 = 4 раза. Если взять гораздо более радикальный случай и увеличить все линейные размеры в 10 раз, все площади поверхностей – полов, стен, потолков и так далее – увеличатся в 10 × 10 = 100 раз (то есть стократно), а объемы помещений возрастут много больше, в 10 × 10 × 10 = 1000 раз (то есть тысячекратно).
Это обстоятельство чрезвычайно важно для устройства и деятельности многого из того, что нас окружает, будь то здания, в которых мы живем и работаем, или строение животных и растений природного мира. Например, уровни отопления, охлаждения и освещения в большинстве случаев пропорциональны площади поверхности нагревателей, кондиционеров и окон. Поэтому их производительность растет гораздо медленнее, чем объем помещений, которые требуется отапливать, охлаждать или освещать, поэтому при масштабном увеличении здания его потребности в этом отношении возрастают непропорционально. Сходным образом для крупных животных может быть проблематичным обеспечение рассеяния тепла, выделяемого в результате обмена веществ и физической деятельности, так как площадь поверхности, через которую это тепло рассеивается, у них меньше относительно объема тела, чем у животных более мелких. Например, слоны решили эту проблему, отрастив себе непропорционально большие уши, которые существенно увеличивают площадь поверхности их тела и позволяют рассеивать большее количество тепла.
Весьма вероятно, что принципиальное различие между масштабным увеличением поверхностей и объемов осознавали многие и до Галилея. Его дополнительная новая идея заключалась в объединении этой геометрической истины с осознанием того, что прочность колонн, балок и членов тела определяется величиной площади их поперечного сечения, а не длиной. Так, столб с прямоугольным сечением 4 на 10 см (= 40 см²) может поддерживать вес, в четыре раза больший, чем столб из того же материала, линейные размеры поперечного сечения которого в два раза меньше, то есть 2 на 5 см (= 10 см²) независимо от длин обоих столбов. Первый из них может быть длиной 2 м, а второй – 4, это не имеет значения. Именно поэтому строители, архитекторы и инженеры, занимающиеся строительством, классифицируют пиломатериалы по площади поперечного сечения, а в строительных магазинах их снабжают этикетками типа «40 × 40», «40 × 50», «50 × 50» и так далее.
Однако при масштабном увеличении здания или животного их вес возрастает прямо пропорционально объему – если, конечно, материалы, из которых они состоят, не изменяются и, следовательно, их плотность остается той же. Таким образом, удвоение объема приводит к удвоению веса. Это означает, что вес, который поддерживает колонна или конечность, возрастает значительно быстрее, чем увеличивается прочность: вес (как и объем) масштабируется пропорционально кубу линейных размеров, а прочность увеличивается лишь пропорционально их квадрату. Чтобы проиллюстрировать это положение, представим себе дерево или здание, высота которых увеличивается в 10 раз, а форма остается неизменной. Тогда вес, который необходимо поддерживать, возрастает тысячекратно (в 103 раз), а прочность колонны или ствола, поддерживающих этот вес, – лишь стократно (в 102 раз). Таким образом, способность поддерживать дополнительный вес после такого увеличения оказывается равна всего лишь одной десятой исходной величины. Поэтому произвольное увеличение размеров конструкции, какой бы она ни была, рано или поздно приведет к ее обрушению под собственным весом. Размер и рост имеют пределы.
Иначе говоря, по мере увеличения размеров последовательно уменьшается относительная прочность. Или, если использовать яркий образ, который приводит сам Галилей, «в телах меньших замечается даже относительное увеличение [прочности], так, я думаю, что небольшая собака может нести на себе двух или даже трех таких же собак, в то время лошадь едва ли может нести на спине одну только другую лошадь, равную ей по величине»[26]26
Галилей Г. Указ. соч., с. 217.
[Закрыть].
Правообладателям!
Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.Читателям!
Оплатили, но не знаете что делать дальше?