Книги по бизнесу и учебники по экономике. 8 000 книг, 4 000 авторов

» » Читать книгу по бизнесу Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний Джеффри Уэст : онлайн чтение - страница 5

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Правообладателям!

Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?

  • Текст добавлен: 11 апреля 2018, 16:09

Текст бизнес-книги "Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний"


Автор книги: Джеффри Уэст


Раздел: Жанр неизвестен


Возрастные ограничения: +16

Текущая страница: 5 (всего у книги 5 страниц)

2. Ошибочные выводы и недоразумения с масштабами: Супермен

Супермен, впервые появившийся на Земле в 1938 г., до сих пор остается одним из величайших кумиров мира фантастики и фэнтези. Я привожу здесь первую страницу первого комикса о Супермене 1938 г., на которой объяснялось его происхождение[27]27
  J. Shuster and J. Siegel. Superman. Action Comics. 1938. 1.


[Закрыть]
. Еще младенцем он прилетел с планеты Криптон, «физическое строение обитателей которой на миллионы лет опередило наше. В зрелом возрасте представители его расы приобретали титаническую силу». Действительно, повзрослевший Супермен «легко мог прыгать на ⅛ мили[28]28
  Около 200 м. – Прим. ред.


[Закрыть]
, перескакивать через двадцатиэтажные здания… поднимать огромные тяжести… бежать быстрее скоростного поезда…» – и все эти качества торжественно провозглашались в знаменитой заставке к радиопередачам и позднейшим телевизионным сериалам и фильмам: «Он быстрее летящей пули. Он сильнее локомотива. Он может перепрыгнуть через высотное здание одним прыжком. ‹…› Это Супермен!»


Исходный миф о Супермене и объяснение его сверхсилы; начальная страница первого комикса о Супермене 1938 г.


Все это, может быть, и так. Но в последнем квадрате этой же первой страницы мы находим еще одно смелое заявление, настолько важное, что его даже набрали прописными буквами: «НАУЧНОЕ ОБЪЯСНЕНИЕ ПОРАЗИТЕЛЬНОЙ СИЛЫ КЛАРКА КЕНТА… Невероятно? Нет! Ибо прямо сейчас в нашем мире есть существа, обладающие сверхсилой!» В подтверждение этому приводятся два примера: «Скромный муравей может держать вес, в сотни раз превышающий его собственный» и «Кузнечик прыгает на расстояние, которое для человека составило бы длину нескольких кварталов».

Какими бы убедительными ни казались эти примеры, в них проявляются классическое непонимание и ошибочные выводы из достоверных фактов. Муравей кажется, по меньшей мере на первый взгляд, гораздо сильнее человека. Однако, как мы узнали от Галилея, относительная прочность или сила систематически увеличивается с уменьшением размеров. Поэтому при уменьшении масштаба с размеров собаки до размеров муравья из простых правил масштабного изменения силы при изменении размеров следует, что если «небольшая собака может нести на себе двух или даже трех таких же собак», то муравей сможет нести на своей спине целую сотню муравьев такого же размера. Кроме того, поскольку человек приблизительно в 10 миллионов раз тяжелее муравья, из того же рассуждения следует, что человек может нести на себе лишь одного другого человека. Таким образом, муравей на самом деле обладает силой, нормальной для существа его размера, так же как и человек, и в том, что он способен поднять груз, вес которого в сто раз превышает его собственный, нет ничего необычного или удивительного.

Это недоразумение возникает из-за естественной склонности к линейному мышлению, которое подразумевает, что удвоение размеров животного приводит к удвоению его силы. Будь это так, мы были бы в 10 миллионов раз сильнее муравьев и смогли бы поднимать около тонны, что соответствует способности Супермена поднимать более десяти человек за раз.

3. Порядки величины, логарифмы, землетрясения и шкала Рихтера

Как мы только что видели, при увеличении линейных размеров объекта в 10 раз без изменения его формы или состава, площади его поверхностей (и, следовательно, прочность) увеличиваются в 100 раз, а объемы его частей (и, следовательно, вес) – в 1000 раз. Такие степени десяти называют порядками величины и обычно записывают в удобном сокращенном виде: 101, 102, 103 и так далее. Степенной показатель – маленькие цифры над десяткой – показывает, сколько нулей следует после единицы. Так, 106 обозначает миллион, то есть шесть порядков величины, так как это число записывается в виде единицы с шестью нулями: 1 000 000.

В этих обозначениях результат, полученный Галилеем, можно выразить следующим образом: при увеличении линейного размера на каждый порядок площадь и прочность увеличиваются на два порядка, а объем и вес – на три порядка. Из этого следует, что при увеличении площади на один порядок величины объем увеличивается на 3/2 (то есть полтора) порядка. То же соотношение существует и между прочностью и весом: при увеличении прочности на один порядок величины вес, который может поддерживать данная конструкция, увеличивается на полтора порядка. И наоборот, если вес увеличивается на один порядок величины, прочность возрастает лишь на ⅔ порядка. В этом состоит существенное проявление нелинейного соотношения между этими величинами. Если бы это соотношение было линейным, то при увеличении площади на один порядок величины объем тоже увеличивался бы на один порядок.

Хотя многие из нас могут этого и не осознавать, концепция порядков величины, в том числе и дробных, знакома всем нам из сообщений о землетрясениях, появляющихся в средствах массовой информации. Мы нередко слышим в новостях что-нибудь вроде «сегодня в Лос-Анджелесе было зарегистрировано умеренное землетрясение силой 5,7 балла по шкале Рихтера; толчок поколебал многие здания, но причинил лишь незначительные повреждения». А иногда мы узнаем о землетрясениях, подобных тому, что произошло в лос-анджелесском районе Нортридж в 1994 г. Хотя его сила по шкале Рихтера была выше всего на один балл, причиненные им разрушения были огромны. Ущерб от землетрясения в Нортридже силой 6,7 балла составил более 20 миллиардов долларов, причем погибли 60 человек, что делает его одним из самых тяжелых с экономической точки зрения стихийных бедствий в истории США. В то же время землетрясение силой 5,7 балла может причинить лишь пренебрежимо малый ущерб. Такая огромная разница в последствиях при, казалось бы, небольшом увеличении силы толчка связана с тем, что в шкале Рихтера величины выражаются в порядках величины.

Поэтому увеличение на один балл на самом деле означает увеличение на один порядок, и землетрясение силой 6,7 балла на самом деле в десять раз сильнее, чем землетрясение силой в 5,7 балла. Точно так же землетрясение силой 7,7 балла – такое произошло на Суматре в 2010 г. – в 10 раз сильнее, чем землетрясение в Нортридже, и в 100 раз сильнее, чем землетрясение силой 5,7 балла. Землетрясение на Суматре произошло в сравнительно малонаселенной местности, но и оно принесло обширные разрушения, так как вызвало цунами, которое оставило без жилья более 20 тысяч человек и убило почти пятьсот. К несчастью, пятью годами раньше Суматра перенесла еще более разрушительное землетрясение силой 8,7 балла, то есть еще в 10 раз больше. Разумеется, уровень разрушений, вызываемых землетрясением, зависит не только от его силы, но и от местных условий – например, численности и плотности населения, прочности зданий и инфраструктуры и так далее. Сила землетрясения в Нортридже 1994 г. и более недавнего землетрясения в Фукусиме 2011 г., причинивших огромные разрушения, составляла, соответственно, «всего» 6,7 и 6,6 балла.

Собственно говоря, шкала Рихтера измеряет амплитуду «тряски» при землетрясении, регистрируемую сейсмометрами. Количество выделяющейся при этом энергии масштабируется относительно этой амплитуды нелинейно: при увеличении измеренной амплитуды землетрясения на один порядок выделяющаяся энергия увеличивается на полтора (то есть 3/2) порядка величины. Это означает, что изменение амплитуды на два порядка величины эквивалентно изменению выделяющейся энергии на три порядка (в 1000 раз), а изменение всего на 1,0 балла соответствует изменению энергии в квадратный корень из тысячи, то есть в 31,6 раза[29]29
  Отметим для любителей математики, что это вызвано тем, что (101)3/2 = 31,6, а (102)3/2 = 1000.


[Закрыть]
.

Чтобы получить некоторое представление об огромной энергии землетрясений, можно рассмотреть некоторые цифры: при взрыве одного фунта (то есть около 0,5 кг) тринитротолуола высвобождается энергия, приблизительно соответствующая 1 баллу по шкале Рихтера. Сила 3 балла эквивалентна взрыву 1000 фунтов (около 500 кг) ТНТ: взрыв приблизительно такой силы произошел в 1995 г. во время теракта в Оклахома-Сити. 5,7 балла по шкале Рихтера соответствуют приблизительно 5000 т взрывчатки; 6,7 (сила землетрясений в Нортридже и Фукусиме) – приблизительно 170 000 т; 7,7 (землетрясение 2010 г. на Суматре) – приблизительно 5,4 млн т; а 8,7 (землетрясение 2005 г. на Суматре) – приблизительно 170 млн т. Самым сильным из зарегистрированных землетрясений было Великое чилийское землетрясение 1960 г. в городе Вальдивия: его сила составила 9,5 балла (почти в тысячу раз больше по амплитуде, чем в Нортридже и Фукусиме), что соответствует 2700 млн тонн ТНТ.

Отметим для сравнения, что атомная бомба «Малыш», сброшенная в 1945 г. на Хиросиму, высвободила энергию, эквивалентную приблизительно 15 000 тонн ТНТ. Средняя водородная бомба высвобождает более чем в тысячу раз больше энергии, что соответствует крупному землетрясению силой 8 баллов. Речь идет об огромных количествах энергии: 170 млн тонн ТНТ, энергии суматранского землетрясения 2005 г., достаточно для энергоснабжения города с населением 15 миллионов человек (то есть размером со всю агломерацию Большого Нью-Йорка) в течение целого года.

Масштаб, в котором приращение идет не линейно (1, 2, 3, 4, 5…), а по степеням десяти (101, 102, 103, 104, 105…), как на шкале Рихтера, называется логарифмическим. Отметим, что в этом масштабе на самом деле происходит линейное увеличение порядков величины, как видно по показателям степени десяти (верхним индексам). Одна из многочисленных особенностей логарифмического масштаба состоит в том, что она позволяет отображать на одном и том же графике величины, отличающиеся друг от друга по одной из осей во много раз, например силу землетрясения в Вальдивии, землетрясения в Нортридже и взрыва динамитной шашки, то есть значения, различающиеся более чем в миллиард (109) раз. На графике, построенном в линейном масштабе, это было бы невозможно, так как большинство точек сгрудилось бы в самом низу графика. Чтобы построить в линейном масштабе график, включающий в себя все землетрясения, сила которых различается на пять или шесть порядков величины, потребовался бы лист бумаги длиной несколько километров – потому и была изобретена шкала Рихтера.

Благодаря тому что логарифмический масштаб дает удобную возможность компактного представления величин разных порядков на одной и той же странице, он широко используется во всех научных дисциплинах. Эту методику, позволяющую охватить сразу весь диапазон сильно изменяющихся величин, широко применяют, например, для представления яркости звезд, кислотности химических растворов (величины рН), физиологических характеристик животных или ВВП разных стран мира. Именно так построены графики, приведенные на рис. 1–4 во вступительной главе.

4. Тяжелая атлетика и проверка Галилея

Важная особенность науки, часто отличающая ее от других умственных занятий, состоит в требовании подтверждения гипотез опытами и наблюдениями. Это вовсе не тривиальное обстоятельство, как можно видеть из того факта, что утверждение Аристотеля, согласно которому скорость предметов, падающих под действием силы тяжести, пропорциональна их весу, никто не удосужился проверить в течение более двух тысяч лет, а когда его наконец проверили, оно оказалось ошибочным. К сожалению, хотя многие из наших нынешних догм и убеждений, особенно в ненаучных областях, точно так же остаются непроверенными, в них безоговорочно верят, даже не пытаясь найти им каких-либо подтверждений – и это порой приводит к неприятным и даже катастрофическим последствиям.

Поэтому, завершив наше отступление, посвященное степеням десяти, я хотел бы приложить то, что мы узнали о порядках величины и логарифмах, к проверке предсказаний Галилея относительно масштабирования прочности или силы при изменении массы. Можно ли показать, что в «реальном мире» сила действительно изменяется с массой так, как предсказывает правило, гласящее, что изменение порядка ее величины должно происходить в пропорции два к трем?

В 1956 г. химик М. Г. Лицке придумал простое и элегантное подтверждение предсказания Галилея. Он осознал, что данные о том, как максимальная сила масштабируется при изменении массы тела, по меньшей мере у человека, можно найти в статистике тяжелоатлетических соревнований в разных весовых категориях. Все лучшие тяжелоатлеты стараются максимально увеличить вес, который они могут поднять, и тренируются для этого приблизительно с одинаковой интенсивностью и в течение одинакового времени, что позволяет сравнивать их силу в приблизительно одинаковых условиях. Кроме того, соревнования проводятся в трех дисциплинах – жим, рывок и толчок, – так что совокупные результаты по всем трем достаточно хорошо усредняют индивидуальные вариации склонности к той или иной из этих дисциплин. Поэтому такие суммарные результаты можно считать хорошей мерой максимальной силы.

Внимание! Это ознакомительный фрагмент книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента ООО "ЛитРес".
Страницы книги >> Предыдущая | 1 2 3 4 5

Правообладателям!

Представленный фрагмент книги размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает ваши или чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Топ книг за месяц
Разделы







Книги по году издания